Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Sci Immunol ; 8(83): eade5872, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37205767

ABSTRACT

Follicular CD8+ T cells (fCD8) mediate surveillance in lymph node (LN) germinal centers against lymphotropic infections and cancers, but the precise mechanisms by which these cells mediate immune control remain incompletely resolved. To address this, we investigated functionality, clonotypic compartmentalization, spatial localization, phenotypic characteristics, and transcriptional profiles of LN-resident virus-specific CD8+ T cells in persons who control HIV without medications. Antigen-induced proliferative and cytolytic potential consistently distinguished spontaneous controllers from noncontrollers. T cell receptor analysis revealed complete clonotypic overlap between peripheral and LN-resident HIV-specific CD8+ T cells. Transcriptional analysis of LN CD8+ T cells revealed gene signatures of inflammatory chemotaxis and antigen-induced effector function. In HIV controllers, the cytotoxic effectors perforin and granzyme B were elevated among virus-specific CXCR5+ fCD8s proximate to foci of HIV RNA within germinal centers. These results provide evidence consistent with cytolytic control of lymphotropic infection supported by inflammatory recruitment, antigen-specific proliferation, and cytotoxicity of fCD8s.


Subject(s)
CD8-Positive T-Lymphocytes , HIV Infections , Humans , Germinal Center , Lymph Nodes , Virus Replication
2.
Sci Rep ; 12(1): 15427, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104369

ABSTRACT

Sjögren's syndrome is a chronic autoimmune disorder whose pathogenesis is poorly understood and that lacks effective therapies. Detailed quantitative and spatial analyses of tissues affected by Sjögren's syndrome were undertaken, including the quantitation of the frequency of selected cell-cell interactions in the disease milieu. Quantitative analyses of CD4+ T cell subsets and of CD8+ T cells in the labial salivary glands from untreated patients with primary Sjögren's syndrome revealed that activated CD8+ cytotoxic T cells (CD8+CTLs) were the most prominent T cells in these infiltrates. An accumulation of apoptotic glandular epithelial cells, mainly ductal and acinar cells, was observed, consistent with the impaired salivary secretion often observed in patients with this disease. FasL expressing activated CD8+ T cells were seen to accumulate around Fas expressing apoptotic epithelial cells. Quantitative analyses of apoptotic cell types and of conjugates between cytotoxic T cells and epithelial cells undergoing apoptosis suggest that Sjögren's syndrome is primarily driven by CD8+CTL mediated execution of epithelial cells mainly represented by ductal and acinar cells.


Subject(s)
Sjogren's Syndrome , CD8-Positive T-Lymphocytes , Humans , Salivary Glands/metabolism , Salivary Glands, Minor/pathology , Sjogren's Syndrome/pathology , T-Lymphocytes, Cytotoxic/pathology
3.
Clin Immunol ; 237: 108991, 2022 04.
Article in English | MEDLINE | ID: mdl-35364330

ABSTRACT

Many studies have been performed in severe COVID-19 on immune cells in the circulation and on cells obtained by bronchoalveolar lavage. Most studies have tended to provide relative information rather than a quantitative view, and it is a combination of approaches by various groups that is helping the field build a picture of the mechanisms that drive severe lung disease. Approaches employed to date have not revealed information on lung parenchymal T cell subsets in severe COVID-19. Therefore, we sought to examine early and late T cell subset alterations in the lungs and draining lymph nodes in severe COVID-19 using a rapid autopsy protocol and quantitative imaging approaches. Here, we have established that cytotoxic CD4+ T cells (CD4 + CTLs) increase in the lungs, draining lymph nodes and blood as COVID-19 progresses. CD4 + CTLs are prominently expanded in the lung parenchyma in severe COVID-19. In contrast CD8+ T cells are not prominent, exhibit increased PD-1 expression, and no obvious increase is seen in the number of Granzyme B+ CD8+ T cells in the lung parenchyma in severe COVID-19. Based on quantitative evidence for re-activation in the lung milieu, CD4 + CTLs may be as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes , COVID-19 , CD8-Positive T-Lymphocytes , Humans , Lung , T-Lymphocyte Subsets , T-Lymphocytes, Cytotoxic
4.
Clin Infect Dis ; 74(6): 1081-1084, 2022 03 23.
Article in English | MEDLINE | ID: mdl-34245255

ABSTRACT

The clinical significance of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) RNA in stool remains uncertain. We found that extrapulmonary dissemination of infection to the gastrointestinal tract, assessed by the presence of SARS-CoV-2 RNA in stool, is associated with decreased coronavirus disease 2019 (COVID-19) survival. Measurement of SARS-CoV-2 RNA in stool may have utility for clinical risk assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Feces , Gastrointestinal Tract , Humans , RNA, Viral , SARS-CoV-2/genetics
5.
Am J Pathol ; 191(10): 1774-1786, 2021 10.
Article in English | MEDLINE | ID: mdl-34303699

ABSTRACT

Viruses are the second leading cause of cancer worldwide, and human papillomavirus (HPV)-associated head and neck cancers are increasing in incidence in the United States. HPV preferentially infects the crypts of the tonsils rather than the surface epithelium. The present study sought to characterize the unique microenvironment within the crypts to better understand the viral tropism of HPV to a lymphoid-rich organ. Laser-capture microdissection of distinct anatomic areas (crypts, surface epithelium, and germinal centers) of the tonsil, coupled with transcriptional analysis and multiparameter immunofluorescence staining demonstrated that the tonsillar crypts are enriched with myeloid populations that co-express multiple canonical and noncanonical immune checkpoints, including PD-L1, CTLA-4, HAVCR2 (TIM-3), ADORA2A, IDO1, BTLA, LGALS3, CDH1, CEACAM1, PVR, and C10orf54 (VISTA). The resident monocytes may foster a permissive microenvironment that facilitates HPV infection and persistence. Furthermore, the myeloid populations within HPV-associated tonsil cancers co-express the same immune checkpoints, providing insight into potential novel immunotherapeutic targets for HPV-associated head and neck cancers.


Subject(s)
Alphapapillomavirus/physiology , Myeloid Cells/pathology , Myeloid Cells/virology , Palatine Tonsil/pathology , Palatine Tonsil/virology , Viral Tropism/physiology , Antigens, CD/metabolism , B7 Antigens/metabolism , B7-H1 Antigen/metabolism , Cell Adhesion Molecules/metabolism , Epithelium/pathology , Epithelium/virology , Germinal Center/pathology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/virology , Humans , Immune Checkpoint Proteins/metabolism , Laser Capture Microdissection , Monocytes/pathology , Receptors, Virus/metabolism , Transcriptome/genetics
6.
medRxiv ; 2021 Mar 26.
Article in English | MEDLINE | ID: mdl-33791730

ABSTRACT

The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19. IN BRIEF: In severe COVID-19 cytotoxic CD4+ T cells accumulate in draining lymph nodes and in the lungs during the resolving phase of the disease. Re-activated cytotoxic CD4+ T cells and cytotoxic CD8+ T cells are present in roughly equivalent numbers in the lungs at this stage and these cells likely collaborate to eliminate virally infected cells and potentially induce fibrosis. A large fraction of epithelial and endothelial cells in the lung express HLA class II in COVID-19 and there is temporal convergence between CD4+CTL accumulation and apoptosis in the lung. HIGHLIGHTS: In severe COVID-19, activated CD4+ CTLs accumulate in the lungs late in diseaseThese cells likely participate in SARS-CoV-2 clearance, collaborating with CD8+ T cells many of which exhibit an exhausted phenotypeT cells likely contribute to the late exacerbation of inflammationCD4+CTLs have been linked to fibrosis in many disorders and could also be responsible for the eventual induction of fibrosis in a subset of COVID-19 patients. SUMMARY: The contributions of T cells infiltrating the lungs to SARS-CoV-2 clearance and disease progression are poorly understood. Although studies of CD8+ T cells in bronchoalveolar lavage and blood have suggested that these cells are exhausted in severe COVID-19, CD4+ T cells have not been systematically interrogated within the lung parenchyma. We establish here that cytotoxic CD4+ T cells (CD4+CTLs) are prominently expanded in the COVID-19 lung infiltrate. CD4+CTL numbers in the lung increase with disease severity and progression is accompanied by widespread HLA-DR expression on lung epithelial and endothelial cells, increased apoptosis of epithelial cells and tissue remodeling. Based on quantitative evidence for re-activation in the lung milieu, CD4+ CTLs are as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.

7.
Clin Colorectal Cancer ; 20(2): e129-e138, 2021 06.
Article in English | MEDLINE | ID: mdl-33731288

ABSTRACT

PURPOSE: The camptothecin (CPT) analogs topotecan and irinotecan specifically target topoisomerase I (topoI) and are used to treat colorectal, gastric, and pancreatic cancer. Response rate for this class of drug varies from 10% to 30%, and there is no predictive biomarker for patient stratification by response. On the basis of our understanding of CPT drug resistance mechanisms, we developed an immunohistochemistry-based predictive test, P-topoI-Dx, to stratify the patient population into those who did and did not experience a response. PATIENTS AND METHODS: The retrospective validation studies included a training set (n = 79) and a validation cohort (n = 27) of gastric cancer (GC) patients, and 8 cohorts of colorectal cancer (CRC) patient tissue (n = 176). Progression-free survival for 6 months was considered a positive response to CPT-based therapy. Formalin-fixed, paraffin-embedded slides were immunohistochemically stained with anti-phospho-specific topoI-Serine10 (topoI-pS10), quantitated, and analyzed statistically. RESULTS: We determined a threshold of 35% positive staining to offer optimal test characteristics in GC. The GC (n = 79) training set demonstrated 76.6% (95% confidence interval, 64-86) sensitivity; 68.8% (41-88) specificity; positive predictive value (PPV) 92.5% (81-98); and negative predictive value (NPV) 42.3% (24-62). The GC validation set (n = 27) demonstrated 82.4% (56-95) sensitivity and 70.0% (35-92) specificity. Estimated PPV and NPV were 82.4% (56-95) and 70.0% (35-92) respectively. In the CRC validation set (n = 176), the 40% threshold demonstrated 87.5% (78-94) sensitivity; 70.0% (59-79) specificity; PPV 70.7% (61-79); and NPV 87.0 % (77-93). CONCLUSION: The analysis of retrospective data from patients (n = 282) provides clinical validity to our P-topoI-Dx immunohistochemical test to identify patients with disease that is most likely to respond to topoI inhibitors.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , DNA Topoisomerases, Type I/metabolism , Pancreatic Neoplasms/drug therapy , Stomach Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Humans , Male , Middle Aged , Progression-Free Survival , Retrospective Studies , Risk Assessment/methods
8.
Sci Rep ; 11(1): 3890, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33594125

ABSTRACT

Alveolar macrophages (AMs) are critical for defense against airborne pathogens and AM dysfunction is thought to contribute to the increased burden of pulmonary infections observed in individuals living with HIV-1 (HIV). While HIV nucleic acids have been detected in AMs early in infection, circulating HIV during acute and chronic infection is usually CCR5 T cell-tropic (T-tropic) and enters macrophages inefficiently in vitro. The mechanism by which T-tropic viruses infect AMs remains unknown. We collected AMs by bronchoscopy performed in HIV-infected, antiretroviral therapy (ART)-naive and uninfected subjects. We found that viral constructs made with primary HIV envelope sequences isolated from both AMs and plasma were T-tropic and inefficiently infected macrophages. However, these isolates productively infected macrophages when co-cultured with HIV-infected CD4+ T cells. In addition, we provide evidence that T-tropic HIV is transmitted from infected CD4+ T cells to the AM cytosol. We conclude that AM-derived HIV isolates are T-tropic and can enter macrophages through contact with an infected CD4+ T cell, which results in productive infection of AMs. CD4+ T cell-dependent entry of HIV into AMs helps explain the presence of HIV in AMs despite inefficient cell-free infection, and may contribute to AM dysfunction in people living with HIV.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , Host-Pathogen Interactions , Macrophages, Alveolar/virology , Viral Tropism , Adult , Case-Control Studies , Female , Humans , Male , Young Adult
9.
Cell ; 183(4): 918-934.e49, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33113354

ABSTRACT

Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during valence-based learning exhibited a selective correlation between learning and striosomal but not matrix signals. This striosomal activity encoded discrimination learning and was correlated with task engagement, which, in turn, could be regulated by chemogenetic excitation and inhibition. Striosomal function during discrimination learning was disturbed with aging and severely so in a mouse model of Huntington's disease. Anatomical and functional connectivity of parvalbumin-positive, putative fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes compared with matrix in mice that learned. Computational modeling of these findings suggests that FSIs can modulate the striosomal signal-to-noise ratio, crucial for discrimination and learning.


Subject(s)
Aging/pathology , Corpus Striatum/pathology , Huntington Disease/pathology , Learning , Action Potentials , Animals , Behavior, Animal , Biomarkers/metabolism , Corpus Striatum/physiopathology , Discrimination Learning , Disease Models, Animal , Huntington Disease/physiopathology , Interneurons/pathology , Mice, Transgenic , Models, Neurological , Nerve Net/physiopathology , Parvalbumins/metabolism , Photometry , Reward , Task Performance and Analysis
10.
Cell ; 183(1): 143-157.e13, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32877699

ABSTRACT

Humoral responses in coronavirus disease 2019 (COVID-19) are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined post mortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers and a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+ TFH cell differentiation together with an increase in T-bet+ TH1 cells and aberrant extra-follicular TNF-α accumulation. Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+ TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections, and suggest that achieving herd immunity through natural infection may be difficult.


Subject(s)
Coronavirus Infections/immunology , Germinal Center/immunology , Pneumonia, Viral/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aged , Aged, 80 and over , B-Lymphocytes/immunology , COVID-19 , Female , Germinal Center/pathology , Humans , Male , Middle Aged , Pandemics , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Spleen/immunology , Spleen/pathology , Tumor Necrosis Factor-alpha/metabolism
11.
SSRN ; : 3652322, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32742244

ABSTRACT

Humoral responses in COVID-19 disease are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined postmortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers, a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+TFH cell differentiation together with an increase in T-bet+TH1 cells and aberrant extra-follicular TNF-a accumulation.  Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections and suggest that achieving herd immunity through natural infection may be difficult. Funding: This work was supported by NIH U19 AI110495 to SP, NIH R01 AI146779 to AGS, NIH R01AI137057 and DP2DA042422 to DL, BMH was supported by NIGMS T32 GM007753, TMC was supported by T32 AI007245. Funding for these studies from the Massachusetts Consortium of Pathogen Readiness, the Mark and Lisa Schwartz Foundation and Enid Schwartz is also acknowledged. Conflict of Interest: None. Ethical Approval: This study was performed with the approval of the Institutional Review Boards at the Massachusetts General Hospital and the Brigham and Women's Hospital.

12.
J Immunol Methods ; 471: 46-56, 2019 08.
Article in English | MEDLINE | ID: mdl-31132351

ABSTRACT

Neutrophils, the most abundant white blood cell, play a critical role in anti-pathogen immunity via phagocytic clearance, secretion of enzymes and immunomodulators, and the release of extracellular traps. Neutrophils non-specifically sense infection through an array of innate immune receptors and inflammatory sensors, but are also able to respond in a pathogen/antigen-specific manner when leveraged by antibodies via Fc-receptors. Among neutrophil functions, antibody-dependent neutrophil phagocytosis (ADNP) results in antibody-mediated opsonization, enabling neutrophils to sense and respond to infection in a pathogen-appropriate manner. Here, we describe a high-throughput flow cytometric approach to effectively visualize and quantify ADNP and its downstream consequences. The assay is easily adaptable, supporting both the use of purified neutrophils or white blood cells, the use of purified Ig or serum, and the broad utility of any target antigen. Thus, this ADNP assay represents a high-throughput platform for the in-depth characterization of neutrophil function.


Subject(s)
Antibodies/immunology , Antigen-Antibody Complex/immunology , High-Throughput Screening Assays/methods , Neutrophils/immunology , Phagocytosis/immunology , Antigens/immunology , Extracellular Traps/immunology , Flow Cytometry/methods , Humans , Phagocytes/immunology , Reproducibility of Results
13.
Cancer Res ; 77(22): 6365-6374, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28947422

ABSTRACT

Oral tongue squamous cell carcinoma (OTSCC) is the most common oral cavity tumor. In this study, we examined the basis for the activity of programmed cell death protein (PD-1)-based immune checkpoint therapy that is being explored widely in head and neck cancers. Using multispectral imaging, we systematically investigated the OTSCC tumor microenvironment (TME) by evaluating the frequency of PD-1 expression in CD8+, CD4+, and FoxP3+ tumor-infiltrating lymphocytes (TIL). We also defined the cellular sources of PD-1 ligand (PD-L1) to evaluate the utility of PD-1:PD-L1 blocking antibody therapy in this patient population. PD-L1 was expressed in 79% of the OTSCC specimens examined within the TME. Expression of PD-L1 was associated with moderate to high levels of CD4+ and CD8+ TILs. We found that CD4+ TILs were present in equal or greater frequencies than CD8+ TILs in 94% of OTSCC and that CD4+FOXP3neg TILs were colocalized with PD-1/PD-L1/CD68 more frequently than CD8+ TILs. Both CD4+PD1+ and CD8+PD1+ TILs were anergic in the setting of PD-L1 expression. Overall, our results highlight the importance of CD4+ TILs as pivotal regulators of PD-L1 levels and in determining the responsiveness of OTSCC to PD1-based immune checkpoint therapy. Cancer Res; 77(22); 6365-74. ©2017 AACR.


Subject(s)
B7-H1 Antigen/biosynthesis , Carcinoma, Squamous Cell/metabolism , Lymphocytes, Tumor-Infiltrating/metabolism , Macrophages/metabolism , Mouth Neoplasms/metabolism , Programmed Cell Death 1 Receptor/biosynthesis , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Clonal Anergy/immunology , Humans , Immunohistochemistry , Kaplan-Meier Estimate , Lymphocytes, Tumor-Infiltrating/immunology , Macrophages/immunology , Microscopy, Fluorescence , Mouth Neoplasms/immunology , Mouth Neoplasms/pathology , Tumor Microenvironment/immunology
14.
ACS Appl Mater Interfaces ; 9(9): 7941-7949, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28177223

ABSTRACT

Development of multidrug resistance (MDR) contributes to the majority of treatment failures in clinical chemotherapy. We report facial layer-by-layer engineered upconversion nanoparticles (UCNPs) for near-infrared (NIR)-initiated tracking and delivery of small interfering RNA (siRNA) to enhance chemotherapy efficacy by silencing the MDR1 gene and resensitizing resistant ovarian cancer cells to drug. Layer-by-layer engineered UCNPs were loaded with MDR1 gene-silencing siRNA (MDR1-siRNA) by electrostatic interaction. The delivery vehicle enhances MDR1-siRNA cellular uptake, protects MDR1-siRNA from nuclease degradation, and promotes endosomal escape for silencing the MDR gene. The intrinsic photon upconversion of UCNPs provides an unprecedented opportunity for monitoring intracellular attachment and release of MDR1-siRNA by NIR-initiated fluorescence resonance energy transfer occurs between donor UCNPs and acceptor fluorescence dye-labeled MDR1-siRNA. Enhanced chemotherapeutic efficacy in vitro was demonstrated by cell viability assay. The developed delivery vehicle holds great potential in delivery and imaging-guided tracking of therapeutic gene targets for effective treatment of drug-resistant cancers.


Subject(s)
Nanoparticles , Drug Resistance, Neoplasm , Female , Fluorescence Resonance Energy Transfer , Gene Transfer Techniques , Humans , Ovarian Neoplasms , RNA, Small Interfering
15.
J Immunol ; 195(11): 5327-36, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26519527

ABSTRACT

Increased IFN-α production contributes to the pathogenesis of infectious and autoimmune diseases. Plasmacytoid dendritic cells (pDCs) from females produce more IFN-α upon TLR7 stimulation than pDCs from males, yet the mechanisms underlying this difference remain unclear. In this article, we show that basal levels of IFN regulatory factor (IRF) 5 in pDCs were significantly higher in females compared with males and positively correlated with the percentage of IFN-α-secreting pDCs. Delivery of recombinant IRF5 protein into human primary pDCs increased TLR7-mediated IFN-α secretion. In mice, genetic ablation of the estrogen receptor 1 (Esr1) gene in the hematopoietic compartment or DC lineage reduced Irf5 mRNA expression in pDCs and IFN-α production. IRF5 mRNA levels furthermore correlated with ESR1 mRNA levels in human pDCs, consistent with IRF5 regulation at the transcriptional level by ESR1. Taken together, these data demonstrate a critical mechanism by which sex differences in basal pDC IRF5 expression lead to higher IFN-α production upon TLR7 stimulation in females and provide novel targets for the modulation of immune responses and inflammation.


Subject(s)
Dendritic Cells/immunology , Interferon Regulatory Factors/metabolism , Interferon-alpha/biosynthesis , Sex Characteristics , Toll-Like Receptor 7/metabolism , Animals , Cells, Cultured , Estrogen Receptor alpha/genetics , Female , Gene Expression Regulation , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/pharmacology , Interferon-alpha/metabolism , Male , Mice , Mice, Transgenic , RNA, Messenger/biosynthesis , Recombinant Proteins/pharmacology , Signal Transduction/genetics
16.
J Exp Biol ; 214(Pt 16): 2660-70, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21795561

ABSTRACT

Acceleration of embryonic rotation is a common response to hypoxia among pond snails. It was first characterized in Helisoma trivolvis embryos, which have a pair of sensorimotor neurons that detect hypoxia and release serotonin onto postsynaptic ciliary cells. The objective of the present study was to determine how the hypoxia response is mediated in Lymnaea stagnalis, which differ from H. trivolvis by having both serotonergic and dopaminergic neurons, and morphologically distinct ciliated structures at comparative stages of embryonic development. Time-lapse video recordings of the rotational behavior in L. stagnalis revealed similar rotational features to those previously observed in H. trivolvis, including rotational surges and rotational responses to hypoxia. Serotonin and dopamine increased the rate of rotation with similar potency. In contrast, serotonin was more potent than dopamine in stimulating the ciliary beat frequency of isolated pedal cilia. Isolated apical plate cilia displayed an irregular pattern of ciliary beating that precluded the measurement of ciliary beat frequency. A qualitative assessment of ciliary beating revealed that both serotonin and dopamine were able to stimulate apical plate cilia. The ciliary responses to dopamine were reversible in both pedal and apical plate cilia, whereas the responses to serotonin were only reversible at concentrations below 100 µmol l(-1). Mianserin, a serotonin receptor antagonist, and SKF83566, a dopamine receptor antagonist, effectively blocked the rotational responses to serotonin and dopamine, respectively. The rotational response to hypoxia was only partially blocked by mianserin, but was fully blocked by SKF83566. These data suggest that, despite the ability of serotonin to stimulate ciliary beating in L. stagnalis embryos, the rotational response to hypoxia is primarily mediated by the transient apical catecholaminergic neurons that innervate the ciliated apical plate.


Subject(s)
Behavior, Animal , Biological Evolution , Cilia/metabolism , Embryo, Nonmammalian/metabolism , Lymnaea/embryology , Lymnaea/metabolism , Neurotransmitter Agents/metabolism , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/analogs & derivatives , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Anaerobiosis/drug effects , Animals , Behavior, Animal/drug effects , Cilia/drug effects , Dopamine/metabolism , Embryo, Nonmammalian/drug effects , Fluorescent Antibody Technique , Lymnaea/drug effects , Mianserin/pharmacology , Rotation , Serotonin/metabolism , Time Factors
17.
J Leukoc Biol ; 89(4): 507-15, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21097698

ABSTRACT

PD-1 plays an important role in T cell exhaustion during HIV infection. PD-1 has two ligands: PD-L1, expressed on hematopoietic and nonhematopoietic cells, and PD-L2, limited to DCs and macrophages. Little is known about PD-L1 expression and regulation in human macrophages. Previous reports have found few immediate effects of macrophage exposure to HIV, suggesting that macrophages lack PRRs for this virus. Using quantitative confocal microscopy and a multiplexed cytokine bead array, we measured induction of PD-L1, PD-L2, and innate response cytokines in human MDMs in response to chemically inactivated HIV virions. Consistent with previous reports, no cytokines were induced by HIV virion exposure. Whereas PD-L1 and PD-L2 had low baseline expression, TLR ligands (LPS and CL097) up-regulated PD-L1 but not PD-L2. Unlike what we found for cytokine expression, PD-L1 and PD-L2 were up-regulated in response to exposure with inactivated HIV virions or with replication-competent HIV. Expression of PD-L1 was differentially modulated by IL-10, which induced up-regulation of PD-L1 but not of PD-L2, and IL-10 blockade enhanced only PD-L2 expression. We discuss implications for innate recognition of HIV by macrophages and potential, different roles for PD-L1 and PD-L2 in immunity and pathogenesis.


Subject(s)
Antigens, CD/metabolism , B7-1 Antigen/metabolism , HIV Infections/immunology , HIV Infections/metabolism , HIV-1/immunology , Interleukin-10/pharmacology , Macrophages/metabolism , B7-H1 Antigen , Cytokines/metabolism , Flow Cytometry , Humans , Lipopolysaccharides/pharmacology , Lymphocyte Activation , Programmed Cell Death 1 Ligand 2 Protein , T-Lymphocytes/drug effects , Virion , Virus Replication
18.
Nat Immunol ; 11(6): 495-502, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20473299

ABSTRACT

Chemokines and other chemoattractants direct leukocyte migration and are essential for the development and delivery of immune and inflammatory responses. To probe the molecular mechanisms that underlie chemoattractant-guided migration, we did an RNA-mediated interference screen that identified several members of the synaptotagmin family of calcium-sensing vesicle-fusion proteins as mediators of cell migration: SYT7 and SYTL5 were positive regulators of chemotaxis, whereas SYT2 was a negative regulator of chemotaxis. SYT7-deficient leukocytes showed less migration in vitro and in a gout model in vivo. Chemoattractant-induced calcium-dependent lysosomal fusion was impaired in SYT7-deficient neutrophils. In a chemokine gradient, SYT7-deficient lymphocytes accumulated lysosomes in their uropods and had impaired uropod release. Our data identify a molecular pathway required for chemotaxis that links chemoattractant-induced calcium flux to exocytosis and uropod release.


Subject(s)
Cell Movement/physiology , Synaptotagmins/metabolism , Animals , Chemokine CXCL12/metabolism , Chemotaxis , Immunoblotting , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymerase Chain Reaction , Receptors, CXCR4/metabolism , Synaptotagmin II/metabolism , Synaptotagmins/genetics , T-Lymphocytes/immunology
19.
Methods Cell Biol ; 82: 335-54, 2007.
Article in English | MEDLINE | ID: mdl-17586263

ABSTRACT

The major challenge of the post-genome world is ascribing in situ function to the myriad of proteins expressed in the proteome. This challenge is met by an arsenal of inactivation strategies that include RNAi and genetic knockout. These are powerful approaches but are indirect with respect to protein function and are subject to time delays before onset and possible genetic compensation. This chapter describes two protein-based inactivation approaches called chromophore-assisted laser inactivation (CALI) and fluorophore-assisted light inactivation (FALI). For CALI and FALI, light inactivation is targeted via photosensitizers that are localized to proteins of interest through antibody binding or expressed domains that are fluorescent or bind fluorescent probes. Inactivation occurs when and where the cells or tissues are irradiated and thus CALI and FALI provide an unprecedented level of spatial and temporal resolution of protein inactivation. Here we provide methods for the labeling of antibodies and setup of light sources and discuss controls, advantages of the technology, and potential pitfalls. We conclude with a discussion on a number of new technologies derived from CALI that combine molecular genetic approaches with light-induced inactivation that provide new tools to address in situ protein function.


Subject(s)
Lasers , Animals , Antibodies/metabolism , Fluorescein-5-isothiocyanate/metabolism , Fluorescence
20.
Biophys J ; 85(5): 3319-28, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14581233

ABSTRACT

We addressed the mechanical basis for how embryonic chick dorsal root ganglion growth cones turn on a uniform substrate of laminin-1. Turning is significantly correlated with lamellipodial area but not with filopodial length. We assessed the lamellipodial contribution to turning by asymmetric micro-CALI of myosin isoforms that causes localized lamellipodial expansion (myosin 1c) or filopodial retraction (myosin V). Episodes of asymmetric micro-CALI of myosin 1c (or myosin 1c and V together) caused significant turning of the growth cone. In contrast, repeated micro-CALI of myosin V or irradiation without added antibody did not turn growth cones. These findings argue that lamellipodia and not filopodia are necessary for growth cone turning. To model the role of myosin 1c on growth cone turning, we fitted the measured trajectories from asymmetric micro-CALI of myosin 1c-treated and untreated growth cones to the persistent random walk model. The first parameter in this equation, root-mean-square speed, is indistinguishable between the two data sets whereas the second parameter, the persistence of motion, is significantly increased (2.5-fold) as a result of asymmetric inactivation of myosin 1c by micro-CALI. This analysis demonstrates that growth cone turning results from an increase in the persistence of directional motion rather than a change in speed. Taken together, our results suggest that myosin 1c is a molecular correlate for directional persistence underlying growth cone motility.


Subject(s)
Cell Movement/physiology , Growth Cones/physiology , Growth Cones/ultrastructure , Models, Neurological , Molecular Motor Proteins/physiology , Movement/physiology , Neuronal Plasticity/physiology , Animals , Cell Division/physiology , Cells, Cultured , Chick Embryo , Computer Simulation , Ganglia, Spinal/cytology , Ganglia, Spinal/physiology , Mechanotransduction, Cellular/physiology , Models, Statistical , Myosin Type I , Myosin Type V/physiology , Myosins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...