Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(1): 013602, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38242659

ABSTRACT

The strong coupling of quantum emitters to a cavity mode has been of paramount importance in the development of quantum optics. Recently, also the strong coupling to more than a single mode of an electromagnetic resonator has drawn considerable interest. We investigate how this multimode strong coupling regime can be harnessed to coherently control quantum systems. Specifically, we demonstrate that a Maxwell fish-eye lens can be used to implement a pulsed excitation exchange between two distant quantum emitters. This periodic exchange is mediated by single-photon pulses and can be extended to a photon-exchange between two atomic ensembles, for which the coupling strength is enhanced collectively.

2.
Phys Rev Lett ; 131(4): 043601, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37566849

ABSTRACT

We study the superradiant emission of an inverted spin ensemble strongly coupled to a superconducting cavity. After fast inversion, we detune the spins from the cavity and store the inversion for tens of milliseconds, during which the remaining transverse spin components disappear. Switching back on resonance enables us to study the onset of superradiance. A weak trigger pulse of a few hundred photons shifts the superradiant burst to earlier times and imprints its phase onto the emitted radiation. For long hold times, the inversion decreases below the threshold for spontaneous superradiance. There, the energy stored in the ensemble can be used to amplify microwave pulses passing through the cavity.

3.
Phys Rev Lett ; 130(26): 263602, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37450811

ABSTRACT

Quantum models based on few-mode master equations have been a central tool in the study of resonator quantum electrodynamics, extending the seminal single-mode Jaynes-Cummings model to include loss and multiple modes. Despite their broad application range, previous approaches within this framework have either relied on a Markov approximation or a fitting procedure. By combining ideas from pseudomode and quasinormal mode theory, we develop a certification criterion for multi-mode effects in lossy resonators. It is based on a witness observable, and neither requires a fitting procedure nor a Markov approximation. Using the resulting criterion, we demonstrate that such multi-mode effects are important for understanding previous experiments in x-ray cavity QED with Mössbauer nuclei and that they allow one to tune the nuclear ensemble properties.

4.
Biochem J ; 396(2): 297-306, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16483255

ABSTRACT

PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Membrane Proteins/metabolism , Peptides/chemistry , Protein Binding , A Kinase Anchor Proteins , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Binding Sites , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/chemistry , Electrophysiology , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Membrane Proteins/chemistry , Models, Molecular , Molecular Sequence Data , Peptides/metabolism , Peptides/pharmacology , Protein Structure, Tertiary , Protein Subunits , Rats , Sequence Alignment , Time Factors
5.
Proteomics ; 4(10): 2991-3006, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15378750

ABSTRACT

The surface subproteome of Listeria monocytogenes that includes many proteins already known to be involved in virulence and interaction with host cells has been characterized. A new method for the isolation of a defined surface proteome of low complexity has been established based on serial extraction of proteins by different salts at high concentration, and in all 55 proteins were identified by N-terminal sequencing and mass spectrometry. About 16% of these proteins are of unknown function and three proteins have no orthologue in the nonpathogenic L. innocua and might be involved in virulence mechanisms. Remarkably, a relatively high number of proteins with a function in the cytoplasmic compartment was identified in this surface proteome. These proteins had neither predicted or detectable signal peptides nor could any modification be observed except removal of the N-terminal methionine. Enolase (Lmo2455) is one of these proteins. It was shown to be present in the cell wall of the pathogen by immunoelectron microscopy and, along with heat shock factor DnaK (Lmo1473), elongation factor TU (Lmo2653), and glyceraldehyde-3-phosphate dehydrogenase (Lmo2459), it was found to be able to bind human plasminogen in overlay blots and surface plasmon resonance (SPR) experiments. The KD values of these interactions were determined by SPR measurements. The data indicate a possible role of these proteins as receptors for human plasminogen on the bacterial cell surface. The potential role of this recruitment of a host protease for extracellular invasion mechanisms is discussed.


Subject(s)
Bacterial Proteins/chemistry , Cell Wall/metabolism , Listeria monocytogenes/metabolism , Proteome , Aminopeptidases/chemistry , Blotting, Western , Cloning, Molecular , Computational Biology , Cytoplasm/metabolism , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Humans , Kinetics , Ligands , Mass Spectrometry , Methionine/chemistry , Microscopy, Immunoelectron , Plasminogen/chemistry , Plasminogen/metabolism , Protein Structure, Tertiary , Proteins/chemistry , Salts/pharmacology , Sequence Analysis, Protein , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Surface Plasmon Resonance , Time Factors , Virulence
6.
Mol Microbiol ; 49(2): 411-23, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12828639

ABSTRACT

The interaction of Streptococcus pneumoniae with human plasmin(ogen) represents a mechanism to enhance bacterial virulence by capturing surface-associated proteolytic activity in the infected host. Plasminogen binds to surface displayed pneumococcal alpha-enolase (Eno) and is subsequently activated to the serine protease plasmin by host-derived tissue plasminogen activator (tPA) or urokinase (uPA). The C-terminal lysyl residues of Eno at position 433 and 434 were identified as a binding site for the kringle motifs of plasmin(ogen) which contain lysine binding sites. In this report we have identified a novel internal plamin(ogen)-binding site of Eno by investigating the protein-protein interaction. Plasmin(ogen)-binding activity of C-terminal mutated Eno proteins used in binding assays as well as surface plasmon resonance studies suggested that an additional binding motif of Eno is involved in the Eno-plasmin(ogen) complex formation. The analysis of spot synthesized synthetic peptides representing Eno sequences identified a peptide of nine amino acids located between amino acids 248-256 as the minimal second binding epitope mediating binding of plasminogen to Eno. Binding of radiolabelled plasminogen to viable pneumococci was competitively inhibited by a synthetic peptide FYDKERKVYD representing the novel internal plasmin(ogen)-binding motif of Eno. In contrast, a synthetic peptide with amino acid substitutions at critical positions in the internal binding motif identified by systematic mutational analysis did not inhibit binding of plasminogen to pneumococci. Pneumococcal mutants expressing alpha-enolase with amino acid substitutions in the internal binding motif showed a substantially reduced plasminogen-binding activity. The virulence of these mutants was also attenuated in a mouse model of intranasal infection indicating the significance of the novel plasminogen-binding motif in the pathogenesis of pneumococcal diseases.


Subject(s)
Bacterial Proteins/metabolism , Fibrinolysin/metabolism , Phosphopyruvate Hydratase/metabolism , Plasminogen/metabolism , Streptococcus pneumoniae/enzymology , Amino Acid Motifs , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Humans , Mice , Mice, Inbred BALB C , Mutagenesis, Site-Directed , Peptides/metabolism , Phosphopyruvate Hydratase/chemistry , Phosphopyruvate Hydratase/genetics , Protein Binding , Streptococcus pneumoniae/pathogenicity , Surface Plasmon Resonance , Virulence
7.
J Biol Chem ; 277(26): 23123-30, 2002 Jun 28.
Article in English | MEDLINE | ID: mdl-11953425

ABSTRACT

The cleavage of bovine collagen I by neutrophil collagenase MMP-8 has been followed at pH 7.4, 37 degrees C. The behavior of the whole enzyme molecule (whMMP-8), displaying both the catalytic domain and the hemopexin-like domain, has been compared under the same experimental conditions with that of the catalytic domain only. The main observation is that whMMP-8 cleaves bovine collagen I only at a single specific site, as already reported by many others (Mallya, S. K., Mookhtiar, K. A., Gao, Y., Brew, K., Dioszegi, M., Birkedal-Hansen, H., and van Wart, H. E. (1990) Biochemistry 29, 10628-10634; Knäuper, V., Osthues, A., DeClerk, Y. A., Langley, K. A., Bläser, J., and Tschesche, H. (1993) Biochem. J. 291, 847-854; Marini, S., Fasciglione, G. F., De Sanctis, G., D'Alessio, S., Politi, V., and Coletta, M. (2000) J. Biol. Chem. 275, 18657-18663), whereas the catalytic domain lacks this specificity and cleaves the collagen molecule at multiple sites. Furthermore, a meaningful difference is observed for the cleavage features displayed by two forms of the catalytic domain, which differ for the N terminus resulting from the activation process (i.e. the former Met(80) of the proenzyme (MetMMP-8) and the former Phe(79) of the proenzyme (PheMMP-8)). Thus, the PheMMP-8 species is characterized by a much faster k(cat)/K(m), fully attributable to a lower K(m), suggesting that the conformation of the catalytic domain, induced by the insertion of this N-terminal residue in a specific pocket (Reinemer, P., Grams, F., Huber, R., Kleine, T., Schnierer, S., Piper, M., Tschesche, H., and Bode, W. (1994) FEBS Lett. 338, 227-233), brings about a better, although less discriminatory, recognition process of cleavage site(s) on bovine collagen I.


Subject(s)
Collagen Type I/metabolism , Matrix Metalloproteinase 8/metabolism , Neutrophils/enzymology , Animals , Catalytic Domain , Cattle , Enzyme Activation , Matrix Metalloproteinase 8/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...