Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Plankton Res ; 42(6): 702-713, 2020.
Article in English | MEDLINE | ID: mdl-33239965

ABSTRACT

Predators not only have direct impact on biomass but also indirect, non-consumptive effects on the behavior their prey organisms. A characteristic response of zooplankton in aquatic ecosystems is predator avoidance by diel vertical migration (DVM), a behavior which is well studied on the population level. A wide range of behavioral diversity and plasticity has been observed both between- as well as within-species and, hence, investigating predator-prey interactions at the individual level seems therefore essential for a better understanding of zooplankton dynamics. Here we applied an underwater imaging instrument, the video plankton recorder (VPR), which allows the non-invasive investigation of individual, diel adaptive behavior of zooplankton in response to predators in the natural oceanic environment, providing a finely resolved and continuous documentation of the organisms' vertical distribution. Combing observations of copepod individuals observed with the VPR and hydroacoustic estimates of predatory fish biomass, we here show (i) a small-scale DVM of ovigerous Pseudocalanus acuspes females in response to its main predators, (ii) in-situ observations of a direct short-term reaction of the prey to the arrival of the predator and (iii) in-situ evidence of pronounced individual variation in this adaptive behavior with potentially strong effects on individual performance and ecosystem functioning.

2.
Mar Environ Res ; 130: 1-11, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28712824

ABSTRACT

Full-coverage spatial data of occurrence and a detailed description of habitat requirements of epibenthic communities are needed in many conservation and management contexts. In the North Sea the focus has so far been on small benthic infauna, whereas structure and ecosystem functions of larger epifaunal communities have been largely ignored. This study provides a comprehensive analysis of epibenthic community structure in the south-eastern North Sea, including a detailed inventory of species, diversity and spatially contiguous distribution of communities. Data from nearly 400 stations were compiled for the study, enabling us to describe epibenthic community structure at unprecedented spatial resolution. Eight distinct epibenthic communities were found in the south-eastern North Sea by using multivariate analysis. Distribution modelling with eight environmental variables (bottom temperature and salinity, temperature differences between summer and winter, mud content of sediments, maximum bottom shear stress, stratification, water depth and annual primary production) and one human pressure (fishing effort) was used to extrapolate probable spatial distributions and to identify associated habitat characteristics of the communities in the south-eastern North Sea. Three large epibenthic communities "Coast", "Oysterground" and "Tail End" reflect a gradual habitat change from the coast towards offshore regions, expressed in gradients of bottom salinity, seasonal temperature differences and stratification as the dominant environmental factors. Five smaller communities ("Amrum Bank", "Frisian Front", "Deeps", "Dogger Bank" and "Dogger Slope") outline specific habitats in the south-eastern North Sea. The "Dogger Slope" community has not been recognized before, but has a predicted spatial extent of 7118 km2. Due to the high occurrence of long-lived, sessile species such as sponges this community is very sensitive to demersal fishing.


Subject(s)
Ecosystem , Invertebrates , Animals , Fisheries , Fishes , North Sea , Seasons
3.
PLoS One ; 9(3): e90875, 2014.
Article in English | MEDLINE | ID: mdl-24614110

ABSTRACT

Understanding and predicting species distribution in space and time and consequently community structure and dynamics is an important issue in ecology, and particularly in climate change research. A crucial factor determining the composition and dynamics of animal populations is habitat heterogeneity, i.e., the number of structural elements in a given locality. In the marine pelagic environment habitat heterogeneity is represented by the distribution of physical oceanographic parameters such as temperature, salinity and oxygen that are closely linked to atmospheric conditions. Little attention has been given, however, to the role of habitat heterogeneity in modulating the response of animal communities to external climate forcing. Here we investigate the long-term dynamics of Acartia spp., Temora longicornis, and Pseudocalanus acuspes, three dominant zooplankton species inhabiting different pelagic habitats in the Central Baltic Sea (CBS). We use the three copepods as indicator species for changes in the CBS zooplankton community and apply non-linear statistical modeling techniques to compare spatial population trends and to identify their drivers. We demonstrate that effects of climate variability and change depend strongly on species-specific habitat utilization, being more direct and pronounced at the upper water layer. We propose that the differential functional response to climate-related drivers in relation to strong habitat segregation is due to alterations of the species' environmental niches. We stress the importance of understanding how anticipated climate change will affect ecological niches and habitats in order to project spatio-temporal changes in species abundance and distribution.


Subject(s)
Climate Change , Ecosystem , Zooplankton/growth & development , Animals , Baltic States , Geography , Models, Statistical , Seasons , Species Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...