Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Front Physiol ; 15: 1382238, 2024.
Article in English | MEDLINE | ID: mdl-38737827

ABSTRACT

Background: Intestinal organoids are stem cell-derived, 3D "mini-guts" with similar functions as the native intestinal epithelium such as electrolyte transport or establishment of an epithelial barrier. During intestinal inflammation, epithelial functions are dysregulated by proinflammatory cytokines like tumor necrosis factor α (TNFα) and other messengers from the immune system resulting in a loss of electrolytes and water due to an impaired epithelial barrier and higher net secretion. Methods: A murine small intestinal organoid model was established to study (long-term) effects of TNFα on the intestinal epithelium in vitro using live imaging, immunohistochemical staining and qPCR. Results: TNFα induced apoptosis in intestinal organoids as indicated by an increased number of cells with immunoreactivity for cleaved caspase 3. Furthermore, TNFα exposure led to swelling of the organoids which was inhibited by bumetanide and was concomitant with an upregulation of the bumetanide-sensitive Na+-K+-2Cl- symporter 1 (NKCC1) as shown by qPCR. Fura-2 imaging experiments revealed time-dependent changes in Ca2+ signaling consisting of a rise in the basal cytosolic Ca2+ concentration at day 1 and an increase of the carbachol-induced Ca2+ response after 3 days TNFα exposure. This was prevented by preincubation with La3+, an inhibitor of non-selective cation channels, or by using a Ca2+-free buffer indicating an enhancement of the Ca2+ influx from the extracellular side by the cytokine. No significant changes in cDNA levels of epithelial barrier proteins could be observed in the presence of TNFα. Conclusion: Intestinal organoids are a useful tool to study the mechanism underlying the TNFα-induced secretion on enterocytes such as the regulation of NKCC1 expression or the modulation of cellular Ca2+ signaling.

2.
J Basic Clin Physiol Pharmacol ; 35(1-2): 61-70, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38263911

ABSTRACT

OBJECTIVES: How gaseous signalling molecules affect ion transport processes contributing to the physiological functions of the gastrointestinal tract under hypoxic conditions still needs to be clarified. The objective of the present study was to characterize the impact of gaseous signalling molecules on parameters of colonic ion transport during a hypoxia/reoxygenation cycle and the remaining secretory capacity of the epithelium after such a cycle. METHODS: Short-circuit current (Isc) and tissue conductance (Gt) recordings in Ussing chamber experiments were performed on rat colon samples using CORM-2 (putative CO donor; 35 and 350 µM), sodium nitroprusside (NO donor; 100 µM), NaHS (fast H2S donor; 10 - 1,000 µM), GYY 4137 (slow H2S donor; 50 µM) and Angeli's salt (HNO donor; 100 µM) as donors for gasotransmitters. Inhibition of endogenous synthesis of H2S was operated by inhibitors of cystathionin-γ-lyase, i.e. dl-propargylglycine (1 mM) or ß-cyano-l-alanine (5 mM), and the inhibitor of cystathionine-ß-synthase, amino-oxyacetate (5 mM). RESULTS: The fast gasotransmitter donors NaHS, sodium nitroprusside and Angeli's salt, administered 5 min before the onset of hypoxia, induced an increase in Isc. The response to the subsequently applied hypoxia was characterized by a decrease in Isc, which tended to be reduced only in the presence of the lowest concentration of NaHS (10 µM) tested. Reoxygenation resulted in a slow increase in Isc, which was unaffected by all donors or inhibitors tested. The stable acetylcholine derivative carbachol (50 µM) was administered at the end of each hypoxia/reoxygenation cycle to test the secretory capacity of the epithelium. Pretreatment of the tissue with the putative CO donor CORM-2 suppressed the secretory response induced by carbachol. The same was observed when cystathionin-γ-lyase and cystathionin-γ-synthase were inhibited simultaneously. Under both conditions, Gt drastically increased suggesting an impaired tissue integrity. CONCLUSIONS: The present results demonstrate that none of the exogenous gasotransmitter releasing drugs significantly ameliorated the changes in epithelial ion transport during the hypoxia/reoxygenation cycle ex vivo. In contrast, the putative CO donor CORM-2 exerted a toxic effect on the epithelium. The endogenous production of H2S, however, seems to have a protective effect on the mucosal integrity and the epithelial transport functions, which - when inhibited - leads to a loss of the secretory ability of the mucosa. This observation together with the trend for improvement observed with a low concentration of the H2S donor NaHS suggests a moderate protective role of low concentrations of H2S under hypoxic conditions.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Lyases , Nitrites , Organometallic Compounds , Sulfides , Rats , Animals , Gasotransmitters/pharmacology , Hydrogen Sulfide/pharmacology , Nitroprusside , Carbachol , Hypoxia , Ion Transport
3.
R Soc Open Sci ; 9(10): 220244, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36249335

ABSTRACT

Gold nanoparticles have a high potential to be a treatment of diseases by their specific drug delivery properties and multivalent receptor stimulation. For the present project, spherical gold nanoparticles were synthesized and functionalized with the muscarinic receptor antagonist atropine (Au-MUDA-AT NPs). The diameter of the gold core could precisely be controlled by using different synthetic methods and reducing agents resulting in functionalized gold nanoparticles with diameters ranging from 8 to 16 nm. The ability to interact with intestinal muscarinic receptors is size-dependent. When using intestinal chloride secretion induced by the stable acetylcholine derivative, carbachol, as read-out, the strongest inhibition, i.e. the most efficient blockade of muscarinic receptors, was observed with 13 nm sized Au-MUDA-AT NPs. Functional experiments indicate that Au-MUDA-AT NPs with a diameter of 14 nm are able to pass the intestinal mucosa in a time-dependent manner after administration to the intestinal lumen. For example, luminally administered Au-MUDA-AT NPs inhibited contractions of the small intestinal longitudinal muscle layer induced by electrical stimulation of myenteric neurons. A similar inhibition of basolateral epithelial receptors was observed after luminal administration of Au-MUDA-AT NPs when using carbachol-induced chloride secretion across the intestinal epithelium as a test system. Thus, Au-MUDA-AT NPs might be a therapeutic tool for the modulation of intestinal secretion and motility after oral application in the future.

4.
Nanoscale Adv ; 4(15): 3182-3193, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-36132815

ABSTRACT

In this study, we present a strategy for the synthesis of catecholamine functionalised gold nanoparticles and investigated their multivalent interactions with adrenergic receptors in different biological systems. The catecholamines adrenaline and noradrenaline represent key examples of adrenergic agonists. We used gold nanoparticles as carriers and functionalised them on their surface with a variety of these neurotransmitter molecules. For this purpose, we synthesised each ligand separately using mercaptoundecanoic acid as a bifunctional linking unit and adrenaline (or noradrenaline) as a biogenic amine. This ligand was then immobilised onto the surface of presynthesised spherical monodispersive gold nanoparticles in a ligand exchange reaction. After detailed analytical characterisations, the functionalised gold nanoparticles were investigated for their interactions with adrenergic receptors in intestinal, cardiac and respiratory tissues. Whereas the contractility of respiratory smooth muscle cells (regulated by ß2-receptors) was not influenced, (nor)adrenaline functionalised nanoparticles administered in nanomolar concentrations induced epithelial K+ secretion (mediated via different ß-receptors) and increased contractility of isolated rat cardiomyocytes (mediated by ß1-receptors). The present results suggest differences in the accessibility of adrenergic agonists bound to gold nanoparticles to the binding pockets of different ß-receptor subtypes.

5.
Eur J Pharmacol ; 933: 175264, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36100127

ABSTRACT

Proteinases released e.g. during inflammatory or allergic responses affect gastrointestinal functions via proteinase-activated receptors such as PAR1 and PAR2. As the gastrointestinal tract exerts pronounced gradients along its longitudinal axis, the present study focuses on the effect of PAR1 and PAR2 agonists on electrogenic ion transport (measured as short-circuit current; Isc), tissue conductance (Gt) and contractility of the longitudinal muscle layer of rats. In Ussing chamber experiments, the PAR1 agonist TFLLR-NH2, which mimics the tethered ligand liberated after cleavage of the receptor, evoked only a modest increase in Isc (<0.5 µEq·h-1·cm-2) in small intestine, but a strong increase (3-4 µEq·h-1·cm-2) in colon. Pretreatment with tetrodotoxin reduced the response of the colonic segments to the level of the small intestine. Thrombin, the natural activator of PAR1, was much less effective suggesting biased activation by this peptidase. A similar gradient along the longitudinal axis of the intestine was observed with trypsin, the endogenous activator of PAR2. Divergent actions of PAR1 activation by enzymatic cleavage or a mimetic peptide were also observed when recording isometric contractions of longitudinal muscle. For example, in the jejunum TFLLR-NH2 concentration-dependently induced a contractile response, whereas thrombin showed only inconsistent effects. The PAR2 activator AC264613 induced a concentration-dependent decrease in muscle tone combined with an inhibition of phasic spontaneous contractions. PCR experiments and immunohistochemical stainings confirmed the expression of PAR1 and PAR2. The data implies that PAR1 and PAR2 functions vary depending on the intestinal segment.


Subject(s)
Receptor, PAR-1 , Receptor, PAR-2 , Animals , Ligands , Peptides , Rats , Receptors, Thrombin/metabolism , Tetrodotoxin , Thrombin/metabolism , Trypsin/pharmacology
6.
Br J Pharmacol ; 179(21): 4992-5011, 2022 11.
Article in English | MEDLINE | ID: mdl-35853139

ABSTRACT

BACKGROUND AND PURPOSE: ATP plays an important role as an extracellular messenger acting via different types of purinoceptors. Whereas most of the actions of ATP at intestinal epithelia are thought to be mediated by metabotropic P2Y receptors, the role of ionotropic P2X receptors remains unclear. Consequently, we investigated the role of P2X4 and P2X7 receptors on ion transport across rat colonic epithelia by using BzATP, a potent agonist at P2X7 (and weak agonist at P2X4). EXPERIMENTAL APPROACH: Ussing chamber and Ca2+ imaging experiments were performed on rat colonic epithelia, combined with P2X receptor expression studies. KEY RESULTS: Ussing chamber experiments revealed that serosal BzATP induced a neuronally mediated increase in short-circuit current caused by Cl- secretion. In contrast, the effect of mucosal BzATP was smaller, insensitive to tetrodotoxin and Cl- -independent. When epithelia were basolaterally depolarized to measure currents across the apical membrane, BzATP stimulated a cation current consistent with the activation of apical nonselective cation channels. Experiments with isolated colonic crypts revealed a BzATP-induced increase in the cytosolic Ca2+ concentration. Sensitivity to antagonists indicates stimulation of P2X4 and P2X7 receptors by serosal BzATP and of P2X7 receptors by mucosal BzATP. A similar pattern was observed with native ATP, which induced larger transepithelial currents in comparison to BzATP. RT-PCR and immunohistochemistry experiments confirmed the expression of P2X4 and P2X7 receptors in the colon localized in the epithelium and in submucosal ganglia. CONCLUSIONS AND IMPLICATIONS: Epithelial and neuronal ionotropic P2X receptors are involved in the regulation of intestinal ion transport.


Subject(s)
Adenosine Triphosphate , Receptors, Purinergic P2X7 , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Colon/metabolism , Ion Transport , Rats , Receptors, Purinergic P2X4/metabolism , Receptors, Purinergic P2X7/metabolism , Tetrodotoxin/metabolism
7.
Pflugers Arch ; 473(8): 1331, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34196780
8.
Eur J Pharmacol ; 906: 174292, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34216575

ABSTRACT

Short-chain fatty acids (SCFAs) produced by the microbial fermentation of carbohydrates are important energy substrates for mammals. Intestinal epithelia respond to these metabolites by stimulation of anion secretion via the release of epithelial acetylcholine. The present experiments were performed to discover which of the known receptors for SCFAs are expressed in rat caecum, the most important site of fermentation within the intestine of non-ruminant mammals. Using the increase in short-circuit current (Isc) induced by anion secretion as the readout, the order of efficiency of the tested SCFAs in rat caecum was propionate > butyrate > acetate. Both synthetic high-affinity selective free fatty acid (FFA) receptor agonists 4-CMTB (FFA2 receptor) and AR420626 (FFA3 receptor) partially mimicked the effect of propionate on Isc (IProp). IProp was concentration-dependently inhibited by the FFA3 receptor antagonist ß-OH-butyrate. Although no antagonist of rat FFA2 receptor is available, coadministration of the allosteric FFA2 receptor agonist 4-CMTB together with a low concentration of propionate potentiated IProp, suggesting that FFA2 receptor is involved in sensing of short-chain fatty acids as well. The expression of both receptor types was confirmed by qPCR (with FFA2 > FFA3 receptor). Immunohistochemical staining revealed the localization of FFA2 receptor in the surface epithelium and the FFA3 receptor expression predominantly in enteroendocrine cells and subepithelial nerve-like fibers. Taken together, the present results demonstrate that the anion secretion induced by the microbial metabolite propionate in rat caecum is enhanced by activation of FFA2 and FFA3 receptor expressed in different cell types within the caecal epithelium.


Subject(s)
Acetylcholine/metabolism , Cecum/metabolism , Intestinal Mucosa/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cecum/drug effects , Fatty Acids, Volatile/metabolism , Female , Intestinal Mucosa/drug effects , Male , Models, Animal , Rats , Receptors, G-Protein-Coupled/agonists
9.
Acta Physiol (Oxf) ; 233(1): e13711, 2021 09.
Article in English | MEDLINE | ID: mdl-34214253

Subject(s)
Intestines
10.
Vet Sci ; 8(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073160

ABSTRACT

The ceca play an important role in the physiology of the gastrointestinal tract in chickens. Nevertheless, there is a gap of knowledge regarding the functionality of the ceca in poultry, especially with respect to physiological cecal smooth muscle contraction. The aim of the current study is the ex vivo characterization of cecal smooth muscle contraction in laying hens. Muscle strips of circular cecal smooth muscle from eleven hens are prepared to investigate their contraction ex vivo. Contraction is detected using an isometric force transducer, determining its frequency, height and intensity. Spontaneous contraction of the chicken cecal smooth muscle and the influence of buffers (calcium-free buffer and potassium-enriched buffer) and drugs (carbachol, nitroprusside, isoprenaline and Verapamil) affecting smooth muscle contraction at different levels are characterized. A decrease in smooth muscle contraction is observed when a calcium-free buffer is used. Carbachol causes an increase in smooth muscle contraction, whereas atropine inhibits contraction. Nitroprusside, isoprenaline and Verapamil result in a depression of smooth muscle contraction. In conclusion, the present results confirm a similar contraction behavior of cecal smooth muscles in laying hens as shown previously in other species.

11.
Pflugers Arch ; 473(6): 937-951, 2021 06.
Article in English | MEDLINE | ID: mdl-33914143

ABSTRACT

Propionate, a metabolite from the microbial fermentation of carbohydrates, evokes a release of epithelial acetylcholine in rat caecum resulting in an increase of short-circuit current (Isc) in Ussing chamber experiments. The present experiments were performed in order to characterize the ionic mechanisms underlying this response which has been thought to be due to Cl- secretion. As there are regional differences within the caecal epithelium, the experiments were conducted at oral and aboral rat corpus caeci. In both caecal segments, the propionate-induced Isc (IProp) was inhibited by > 85%, when the experiments were performed either in nominally Cl-- or nominally HCO3--free buffer. In the case of Cl-, the dependency was restricted to the presence of Cl- in the serosal bath. Bumetanide, a blocker of the Na+-K+-2Cl--cotransporter, only numerically reduced IProp suggesting that a large part of this current must be carried by an ion other than Cl-. In the aboral caecum, IProp was significantly inhibited by mucosally administered stilbene derivatives (SITS, DIDS, DNDS), which block anion exchangers. Serosal Na+-free buffer reduced IProp significantly in the oral (and numerically also in aboral) corpus caeci. RT-PCR experiments revealed the expression of several forms of Na+-dependent HCO3--cotransporters in caecum, which might underlie the observed Na+ dependency. These results suggest that propionate sensing in caecum is coupled to HCO3- secretion, which functionally would stabilize luminal pH when the microbial fermentation leads to an increase in the concentration of short-chain fatty acids in the caecal lumen.


Subject(s)
Bicarbonates/metabolism , Cecum/metabolism , Chlorides/metabolism , Propionates/pharmacology , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid/pharmacology , Acetylcholine/metabolism , Animals , Bumetanide/pharmacology , Cecum/drug effects , Male , Rats , Rats, Wistar , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Sodium-Bicarbonate Symporters/antagonists & inhibitors , Sodium-Bicarbonate Symporters/metabolism , Sodium-Potassium-Chloride Symporters/metabolism
12.
J Physiol ; 598(23): 5297-5298, 2020 12.
Article in English | MEDLINE | ID: mdl-32965681
13.
Sci Rep ; 10(1): 7248, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350310

ABSTRACT

SLC10A7 represents an orphan member of the Solute Carrier Family SLC10. Recently, mutations in the human SLC10A7 gene were associated with skeletal dysplasia, amelogenesis imperfecta, and decreased bone mineral density. However, the exact molecular function of SLC10A7 and the mechanisms underlying these pathologies are still unknown. For this reason, the role of SLC10A7 on intracellular calcium signaling was investigated. SLC10A7 protein expression was negatively correlated with store-operated calcium entry (SOCE) via the plasma membrane. Whereas SLC10A7 knockout HAP1 cells showed significantly increased calcium influx after thapsigargin, ionomycin and ATP/carbachol treatment, SLC10A7 overexpression reduced this calcium influx. Intracellular Ca2+ levels were higher in the SLC10A7 knockout cells and lower in the SLC10A7-overexpressing cells. The SLC10A7 protein co-localized with STIM1, Orai1, and SERCA2. Most of the previously described human SLC10A7 mutations had no effect on the calcium influx and thus were confirmed to be functionally inactive. In the present study, SLC10A7 was established as a novel negative regulator of intracellular calcium signaling that most likely acts via STIM1, Orai1 and/or SERCA2 inhibition. Based on this, SLC10A7 is suggested to be named as negative regulator of intracellular calcium signaling (in short: RCAS).


Subject(s)
Calcium Signaling , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Amino Acid Sequence , Calcium/metabolism , Cell Line , Humans , Mutation , Neoplasm Proteins/metabolism , ORAI1 Protein/metabolism , Organic Anion Transporters, Sodium-Dependent/chemistry , Organic Anion Transporters, Sodium-Dependent/genetics , RNA, Messenger/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Stromal Interaction Molecule 1/metabolism , Symporters/chemistry , Symporters/genetics
14.
Pflugers Arch ; 472(6): 669-670, 2020 06.
Article in English | MEDLINE | ID: mdl-32448954

Subject(s)
Ammonia , Animals , Cations , Cattle
15.
Eur J Pharmacol ; 864: 172713, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31586631

ABSTRACT

The role of mast cells during inflammatory bowel diseases (IBD) is discussed controversially. Whereas several studies report an increase in mast cell density during IBD, others found a decrease. Recently, we observed a reduced response to mast cell degranulation induced by antigen contact in a colitis model. As the effects of mast cell mediators on epithelial ion transport are mediated indirectly via stimulation of secretomotor neurons, we investigated in vitro whether proinflammatory cytokines change the response to mast cell degranulation. Tumor necrosis factor α (TNFα) and a mix of proinflammatory cytokines caused an increase of short-circuit current (Isc) and tissue conductance in rat colon. Anion secretion induced by histamine was downregulated in the presence of interleukin-1ß (IL-1ß) and the cytokine mix, whereas the response to the mast cell stimulator compound 48/80 was not changed significantly. In a coculture of rat submucosal ganglionic cells with a mast cell line (RBL-2H3), TNFα preincubation for 1 d increased the percentage of neurons responding to mast cell degranulation with an increase of the cytosolic Ca2+ concentration and enhanced the amplitude of this response. Consequently, the downregulation of epithelial secretion is compensated by an increased sensitivity of secretomotor neurons leading to a constant response of the epithelium to compound 48/80. Furthermore, enteric neurons can modify mast cell functions as nicotine inhibited the increase in cytosolic Ca2+ concentration of RBL-2H3 cells and the Isc evoked by compound 48/80. Consequently, these in vitro models deliver new insights into cellular interactions in the gut wall under inflammatory conditions.


Subject(s)
Cell Communication/drug effects , Cytokines/pharmacology , Intestinal Mucosa/cytology , Mast Cells/cytology , Neurons/cytology , Neurotransmitter Agents/pharmacology , Animals , Calcium/metabolism , Cytosol/drug effects , Cytosol/metabolism , Female , Intestinal Mucosa/metabolism , Male , Mast Cells/drug effects , Mast Cells/metabolism , Neurons/drug effects , Neurons/metabolism , Permeability/drug effects , Rats , Rats, Wistar , p-Methoxy-N-methylphenethylamine/pharmacology
16.
Pflugers Arch ; 471(7): 1007-1023, 2019 07.
Article in English | MEDLINE | ID: mdl-31093757

ABSTRACT

Ion-transport properties of the epithelium of the cecum, the biggest fermental chamber in non-ruminant species, are largely unknown. Recently, in Ussing chamber experiments, segmental differences in basal short-circuit current (Isc) in rat corpus ceci were observed. The oral segment usually exhibited a much lower or even negative basal Isc in comparison with the aboral segment. The aim of the present study was the closer characterization of these differences. Basal Isc was inhibited by bumetanide and tetrodotoxin in both segments, whereas indomethacin reduced basal Isc only in the aboral corpus. Amiloride did not inhibit basal Isc suggesting that spontaneous anion secretion (but not electrogenic Na+ absorption via ENaC) contributes to the baseline current. In both segments, mucosally applied K+ channel blockers increased Isc indicating a spontaneous K+ secretion. Basolateral depolarization was used to characterize the ion conductances in the apical membrane. When a Cl- gradient was applied, apical Cl- conductance stimulated by carbachol and by forskolin was revealed. When the Cl- gradient was omitted and instead a K+ gradient was used to drive currents across apical K+ channels, a Ba2+-sensititve K+ conductance was observed in both segments, and carbachol stimulated this conductance leading to a negative Isc. Conversely, forskolin induced a positive Isc under these conditions which was dependent on the presence of mucosal Na+ consistent with electrogenic Na+ absorption. This current was reduced by amiloride and several blockers of members of the TRP channel superfamily. These results indicate that similar transport mechanisms are involved in electrogenic ion transport across cecal oral and aboral segments, but with a higher spontaneous prostaglandin production in the aboral segment responsible for higher basal transport rates of both anions and cations.


Subject(s)
Cecum/metabolism , Ion Transport/physiology , Ions/metabolism , Amiloride/pharmacology , Animals , Bumetanide/pharmacology , Cecum/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Chlorides/metabolism , Colforsin/pharmacology , Epithelium/drug effects , Epithelium/metabolism , Ion Transport/drug effects , Male , Potassium/metabolism , Potassium Channels/drug effects , Potassium Channels/metabolism , Rats , Rats, Wistar , Sodium/metabolism , Tetrodotoxin/pharmacology
17.
Front Physiol ; 10: 329, 2019.
Article in English | MEDLINE | ID: mdl-30971956

ABSTRACT

The density of intestinal mast cells has been reported to increase during inflammatory bowel disease (IBD). As mast cell mediators are known to increase the permeability of epithelial tight junctions, we hypothesized that antigen responses in sensitized animals might be enhanced under inflammatory conditions. This would contribute to a vicious circle by further enhancing the entry of luminal antigens into the colonic wall and thereby continuing the inadequate immune response during IBD. Therefore, one group of rats was sensitized against ovalbumin. In a second group of animals additionally a colitis was induced by rectal administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) dissolved in ethanol. Specimens from distal colon and jejunum (as intestinal segment located distantly from the inflamed area) were mounted in Ussing chambers to measure tissue conductance, short-circuit current (Isc) induced by antigen exposure and paracellular permeability (fluorescein flux). This was paralleled by determination of mast cell markers and tight junction proteins with immunofluorescence and qPCR. In contrast to the initial hypothesis, antigen-induced Isc was not upregulated, but tended to be downregulated in the tissues from the colitis animals, both in colon and in jejunum. Only in the jejunum mast cell degranulation evoked an increase in fluorescein flux. Mast cell density was not altered significantly in the colon of the colitis animals. In the jejunum, sensitization induced a strong increase in mast cell density, which was unaffected by additional induction of colitis. Expression of sealing tight junction components claudin-3 and -4 were increased on the protein level in the sensitized animals in comparison to non-sensitized animals. Additional induction of colitis evoked a downregulation of claudin-3 in both intestinal segments and an upregulation of claudin-4 in the jejunum. Consequently, these data indicate segment differences in mast cell - epithelium interaction, but no enhancement of ion secretion in the TNBS/ethanol model of acute colitis after prior sensitization.

18.
Br J Pharmacol ; 176(9): 1328-1340, 2019 05.
Article in English | MEDLINE | ID: mdl-30807644

ABSTRACT

BACKGROUND AND PURPOSE: ACh exerts its actions via nicotinic (nAChR) and muscarinic receptors. In the peripheral nervous system, ionotropic nAChR mediate responses in excitable cells. However, recent studies demonstrate the expression of nAChR in the colonic epithelium, which are coupled to an induction of Cl- secretion via activation of the Na+ -K+ -pump. EXPERIMENTAL APPROACH: In order to find out whether these epithelial nAChR function as ionotropic receptors, intracellular microelectrode and imaging experiments were performed in isolated crypts from rat colon. Apically permeabilized epithelia were used to measure pump current across the basolateral membrane. KEY RESULTS: Imaging experiments with the Na+ -sensitive dye SBFI revealed that nicotine induced a decrease in the cytosolic Na+ concentration concomitant with a fall in the cytosolic Ca2+ concentration in about 50% of the cells. as shown in fura-2 experiments. Nicotine hyperpolarized the membrane by 6.4 ± 2.1 mV. These observations contradict the assumption that epithelial nAChR function as ligand-gated non-selective cation channels. The decrease in the cytosolic Na+ concentration was strongly delayed, when the Na+ -K+ -pump was inhibited by scilliroside. Ussing chamber experiments revealed a strong dependence of the nicotine-induced pump current on the presence of Ca2+ , and chelation of cytosolic Ca2+ with BAPTA prevented the fall in the cytosolic Na+ concentration in SBFI-loaded crypts. Inhibition of PKC with GF 109203X or Goe 6983 significantly reduced the nicotine-induced pump current. CONCLUSIONS AND IMPLICATIONS: These results suggest that epithelial nAChR activate the Na+ -K+ -pump via a PKC dependent on a sufficient cytosolic Ca2+ concentration.


Subject(s)
Colon/metabolism , Epithelium/metabolism , Receptors, Nicotinic/metabolism , Animals , Female , Male , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism
19.
Pflugers Arch ; 471(4): 605-618, 2019 04.
Article in English | MEDLINE | ID: mdl-30506275

ABSTRACT

Acetylcholine and atypical esters of choline such as propionyl- and butyrylcholine are produced by the colonic epithelium and are released when epithelial receptors for short-chain fatty acids (SCFA) are stimulated by propionate. It is assumed that the SCFA used by the choline acetyltransferase (ChAT), the central enzyme for the production of these choline esters, originate from the colonic lumen, where they are synthesized during the bacterial fermentation of carbohydrates. Therefore, it seemed to be of interest to study whether the non-neuronal cholinergic system in the colonic epithelium is affected by maneuvers intended to stimulate or to inhibit colonic fermentation by changing the intestinal microbiota. In two series of experiments, rats were either fed with a high fiber diet (15.5% (w/v) crude fibers in comparison to 4.6% (w/w) in the control diet) or treated orally with the antibiotic vancomycin. High fiber diet induced an unexpected decrease in the luminal concentration of SCFA in the colon, but an increase in the caecum, suggesting an upregulation of colonic SCFA absorption, whereas vancomycin treatment resulted in the expected strong reduction of SCFA concentration in colon and caecum. MALDI MS analysis revealed a decrease in the colonic content of propionylcholine by high fiber diet and by vancomycin. High fiber diet caused a significant downregulation of ChAT expression on protein and mRNA level. Despite a modest increase in tissue conductance during the high fiber diet, main barrier and transport properties of the epithelium such as basal short-circuit current (Isc), the flux of the paracellularly transported marker, fluorescein, or the Isc induced by epithelial acetylcholine release evoked by propionate remained unaltered. These results suggest a remarkable stability of the non-neuronal cholinergic system in colonic epithelium against changes in the luminal environment underlying its biological importance for intestinal homeostasis.


Subject(s)
Acetylcholine/metabolism , Colon/metabolism , Intestinal Mucosa/metabolism , Non-Neuronal Cholinergic System/physiology , Animals , Choline/analogs & derivatives , Choline/metabolism , Colon/drug effects , Diet , Epithelium/drug effects , Epithelium/metabolism , Fatty Acids, Volatile/metabolism , Intestinal Mucosa/drug effects , Male , Non-Neuronal Cholinergic System/drug effects , Propionates/pharmacology , Rats , Rats, Wistar
20.
Pflugers Arch ; 470(4): 669-679, 2018 04.
Article in English | MEDLINE | ID: mdl-29299689

ABSTRACT

Acetylcholine is not only a neurotransmitter but is also produced by several non-neuronal cell types with barrier or defence function. One of the non-neuronal tissues with expression of the key enzyme for production of acetylcholine, the choline acetyltransferase (ChAT), is the colonic surface epithelium, which releases acetylcholine after contact with the short-chain fatty acid propionate produced physiologically in the colonic lumen during the microbial fermentation of carbohydrates. Despite the fact that the caecum is the largest fermentation chamber in non-ruminant mammals, nothing is known about the expression and function of a non-neuronal cholinergic system in this part of the large intestine, which was addressed in the present study. In Ussing chamber experiments, propionate induced a concentration-dependent Cl- secretion leading to an increase in short-circuit current (Isc), which was stronger in the aboral part (near the blind ending sac of the caecum) compared to the oral part of caecum. The propionate-induced Isc was blocked by atropine, but was resistant against tetrodotoxin, conotoxins (MVIIC and SVIB) or hexamethonium indicating that propionate acts via non-neuronal acetylcholine. Immunohistochemical staining revealed the expression of ChAT in the caecal surface epithelium with a significant gradient between aboral (high) and oral (low) expression. This difference combined with a higher efficiency of cholinergically induced anion secretion (as revealed by the Isc evoked by the cholinergic agonist carbachol) is probably responsible for the segment dependency of the response to propionate. In summary, propionate stimulates anion secretion in rat caecum via non-neuronal acetylcholine emphasizing the physiological importance of the non-neuronal cholinergic system in the communication between the gastrointestinal microbiome and the mammalian host.


Subject(s)
Acetylcholine/metabolism , Cecum/metabolism , Neurons/metabolism , Non-Neuronal Cholinergic System/physiology , Animals , Anions/metabolism , Atropine/pharmacology , Carbachol/pharmacology , Cecum/drug effects , Chlorides/metabolism , Cholinergic Agonists/pharmacology , Colon/drug effects , Colon/metabolism , Conotoxins/pharmacology , Epithelium/drug effects , Epithelium/metabolism , Fatty Acids, Volatile/metabolism , Female , Hexamethonium/pharmacology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Male , Neurons/drug effects , Neurotransmitter Agents/metabolism , Non-Neuronal Cholinergic System/drug effects , Propionates/pharmacology , Rats , Rats, Wistar , Tetrodotoxin/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...