Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Chemistry ; 30(20): e202400029, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38287711

ABSTRACT

Anion-exchange membrane fuel cells and water electrolyzers have garnered significant attention in past years due to their potential role in sustainable and affordable energy conversion and storage. However, the chemical stability of the polymeric anion-exchange membranes (AEMs), the key component in these devices, currently limits their lifespan. Recently, metallopolymers have been proposed as chemically stable alternatives to organic cations, using metal centers as ion transporters. In metallopolymer AEMs, various properties such as alkaline stability, water uptake, flexibility, and performance, are determined by both the metal complex and polymer backbone. Herein we present a systematic study investigating the influence of the polymer backbone chemistry on some of these properties, focusing on the alkaline stability of low-oxophilicity gold metallopolymers. Despite the use of a common N-heterocyclic carbene ligand, upon gold metalation using the same reaction conditions, different polymer backbones end up forming different gold complexes. These findings suggest that polymer chemistry affects the metalation reaction in addition to the other properties relevant to AEM performance.

2.
Angew Chem Int Ed Engl ; 62(52): e202314781, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37962518

ABSTRACT

Mechanochemistry can lead to the degradation of the properties of covalent macromolecules. In recent years, numerous functional materials have been developed based on block copolymers (BCPs), however, like homopolymers, their chains could undergo mechanochemical damage during processing, which could have crucial impact on their performance. To investigate the mechanochemical response of BCPs, multiple polymers comprising different ratios of butyl acrylate and methyl methacrylate were prepared with similar degree of polymerization and stressed in solution via ultrasonication. Interestingly, all BCPs, regardless of the amount of the methacrylate monomer, presented a mechanochemistry rate constant similar to that of the methacrylate homopolymer, while a random copolymer reacted like the acrylate homopolymer. Size-exclusion chromatography showed that, in addition to the typical main peak shift towards higher retention times, a different daughter fragment was produced indicating a secondary selective scission site, situated around the covalent connection between the two blocks. Molecular dynamics modeling using acrylate and methacrylate oligomers were carried out and indicated that dynamic phase separation occurs even in a good solvent. Such non-random conformations can explain the faster polymer mechanochemistry. Moreover, the dynamic model for end-to-end chain overstretching supports bond scission which is not necessarily chain-centered.

3.
Adv Sci (Weinh) ; 10(34): e2304571, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37870199

ABSTRACT

Unstrained C─C bond activation is attained in homopolymers through mechanochemical bond scission followed by functionalization to yield mostly semi-telechelic polymer chains. Ball milling poly(ethylene oxide) (PEO) in the presence of 1-(bromoacetyl)pyrene (BAPy) yields the pyrene terminated PEO. Similarly, milling with 2,4'-dibromoacetophenone followed by Suzuki coupling allows the introduction of various aryl end groups. PEOs with a molecular weight below 20 kDa show no functionalization, supporting a mechanochemical mechanism. The protocol is also tested with doxorubicin, yielding the drug-polymer conjugate. PEO halogenation is also demonstrated by milling PEO with iodine, N-bromosuccinimide, or N-iodosuccinimide, which can then be reacted with an amine substituted anthracene. Grinding additional carbon polymers with BAPy indicates that this functionalization method is general for different polymer chemistries.

4.
Water Res ; 246: 120684, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37864883

ABSTRACT

Capacitive deionization (CDI) is an emerging technology applied to brackish water desalination and ion selective separations. A typical CDI cell consists of two microporous carbon electrodes, where ions are stored in charged micropore via electrosorption into electric double layers. For typical feed waters containing mixtures of several cations and anions, some of which are polluting, models are needed to guide cell design for a target separation, given the complex electrosorption dynamics of each species. An emerging application for CDI is brackish water treatment for direct agricultural use, for which it is often important to selectively electrosorb monovalent Na+ cations over divalent Ca2+ and Mg2+ cations. Recently, it was demonstrated that utilizing constant-voltage CDI cell charging with sulfonated cathodes and short charging times enabled monovalent-selective separations. Here, we utilize a one-dimensional transient CDI model for a flow-through electrode CDI cell to elucidate the mechanisms enabling such separations. We report the discovery that an asymmetric CDI cell with a chemically functionalized cathode induces electric charges in the pristine anode at 0 V cell voltage, which has important implications for monovalent cation selectivity. Leveraging our mechanistic understanding, with our model we uncover a novel operational regime we term "capacitive ion exchange", where the concentration of one ion species increases while competing species concentration decreases. This regime enables resin-less exchange of monovalent cations for divalent cations, with chemical-free electrical regeneration.


Subject(s)
Sodium Chloride , Water Purification , Ion Exchange , Sodium , Carbon , Water Purification/methods , Electrodes , Cations
5.
Nat Chem ; 15(9): 1199-1201, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37604886
6.
ACS Appl Energy Mater ; 6(2): 1085-1092, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36937111

ABSTRACT

Recently, the development of durable anion-exchange membrane fuel cells (AEMFCs) has increased in intensity due to their potential to use low-cost, sustainable components. However, the decomposition of the quaternary ammonium (QA) cationic groups in the anion-exchange membranes (AEMs) during cell operation is still a major challenge. Many different QA types and functionalized polymers have been proposed that achieve high AEM stabilities in strongly alkaline aqueous solutions. We previously developed an ex situ technique to measure AEM alkaline stabilities in an environment that simulates the low-hydration conditions in an operating AEMFC. However, this method required the AEMs to be soluble in DMSO solvent, so decomposition could be monitored using 1H nuclear magnetic resonance (NMR). We now report the extension of this ex situ protocol to spectroscopically measure the alkaline stability of insoluble AEMs. The stability ofradiation-grafted (RG) poly(ethylene-co-tetrafluoroethylene)-(ETFE)-based poly(vinylbenzyltrimethylammonium) (ETFE-TMA) and poly(vinylbenzyltriethylammonium) (ETFE-TEA) AEMs were studied using Raman spectroscopy alongside changes in their true OH- conductivities and ion-exchange capacities (IEC). A crosslinked polymer made from poly(styrene-co-vinylbenzyl chloride) random copolymer and N,N,N',N'-tetraethyl-1,3-propanediamine (TEPDA) was also studied. The results are consistent with our previous studies based on QA-type model small molecules and soluble poly(2,6-dimethylphenylene oxide) (PPO) polymers. Our work presents a reliable ex situ technique to measure the true alkaline stability of AEMs for fuel cells and water electrolyzers.

7.
Angew Chem Int Ed Engl ; 62(2): e202213980, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36394518

ABSTRACT

Block copolymers (BCPs) are used in numerous applications in modern materials science. Yet, like homopolymers, BCPs can undergo covalent bond scission when mechanically stressed (mechanochemistry), which could lead to unexpected consequences in such applications. BCPs' heterogeneity may affect force transduction, perhaps changing force distribution and localization. To verify this, a gem-dichlorocyclopropane (gDCC) embedded linear chain is prepared and extended with a poly(methyl methacrylate) block. When stressed in solution, the mechanochemical ring-opening of gDCC is accelerated compared to homopolymers, even though the mechanophores are at the chain ends. Moreover, a higher mechanophore activation selectivity is obtained. These results indicate that mechanochemical response outside, and even far from the chain center is quite prominent in BCPs, and that forces along the polymer chain can efficiently activate multi-mechanophores regions, even when far from the polymer midchain.

8.
Nat Commun ; 13(1): 6511, 2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36316323

ABSTRACT

Natural processes continuously degrade a material's performance throughout its life cycle. An emerging class of synthetic self-healing polymers and composites possess property-retaining functions with the promise of longer lifetimes. But sustained in-service repair of structural fiber-reinforced composites remains unfulfilled due to material heterogeneity and thermodynamic barriers in commonly cross-linked polymer-matrix constituents. Overcoming these inherent challenges for mechanical self-recovery is vital to extend in-service operation and attain widespread adoption of such bioinspired structural materials. Here we transcend existing obstacles and report a fiber-composite capable of minute-scale and prolonged in situ healing - 100 cycles: an order of magnitude higher than prior studies. By 3D printing a mendable thermoplastic onto woven glass/carbon fiber reinforcement and co-laminating with electrically resistive heater interlayers, we achieve in situ thermal remending of internal delamination via dynamic bond re-association. Full fracture recovery occurs below the glass-transition temperature of the thermoset epoxy-matrix composite, thus preserving stiffness during and after repair. A discovery of chemically driven improvement in thermal remending of glass- over carbon-fiber composites is also revealed. The marked lifetime extension offered by this self-healing strategy mitigates costly maintenance, facilitates repair of difficult-to-access structures (e.g., wind-turbine blades), and reduces part replacement, thereby benefiting economy and environment.

9.
J Phys Chem Lett ; 13(43): 10216-10221, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36288549

ABSTRACT

Solvent molecules are known to affect chemical reactions, especially if they interact with one or more of the reactants or catalysts. In ion microsolvation, i.e., solvent molecules in the first solvation sphere, strong electronic interactions are created, leading to significant changes in charge distribution and consequently on their nucleophilicity/electrophilicity and acidity/basicity. Despite a long history of research in the field, fundamental issues regarding the effects of ion microsolvation are still open, especially in the condensed phase. Using reactions between hydroxide and relatively stable quaternary ammonium salts as an example, we show that water microsolvation can change hydroxide's chemoselectivity by differently affecting its basicity and nucleophilicity. In this example, the hydroxide reactivity as a nucleophile is less affected by water microsolvation than its reactivity as a base. These disparities are discussed by calculating and comparing oxidation potentials and polarizabilities of the different water-hydroxide clusters.


Subject(s)
Hydroxides , Water , Water/chemistry , Solvents/chemistry
10.
Sci Adv ; 8(32): eabq2727, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35947656

ABSTRACT

We describe the spin polarization-induced chirogenic electropolymerization of achiral 2-vinylpyridine, which forms a layer of enantioenhanced isotactic polymer on the electrode. The product formed is enantioenriched in asymmetric carbon polymer. To confirm the chirality of the polymer film formed on the electrode, we also measured its electron spin polarization properties as a function of its thickness. Two methods were used: First, spin polarization was measured by applying magnetic contact atomic force microscopy, and second, magnetoresistance was assessed in a sandwich-like four-point contact structure. We observed high spin-selective electron transmission, even for a layer thickness of 120 nm. A correlation exists between the change in the circular dichroism signal and the change in the spin polarization, as a function of thickness. The spin-filtering efficiency increases with temperature.

11.
Angew Chem Int Ed Engl ; 61(14): e202115325, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35075760

ABSTRACT

Polymer chains, if long enough, are known to undergo bond scission when mechanically stressed. While the mechanochemical response of random coils is well understood, biopolymers and some key synthetic chains adopt well-defined secondary structures such as helices. To understand covalent mechanochemistry in such structures, poly(γ-benzyl glutamates) are prepared while regulating the feed-monomer chirality, producing chains with similar molecular weights and backbone chemistry but different helicities. Such chains are stressed in solution and their mechanochemistry rates compared by following molecular weight change and using a rhodamine mechanochromophore. Results reveal that while helicity itself is not affected by the covalent bond scissions, chains with higher helicity undergo faster mechanochemistry. Considering that the polymers tested differ only in conformation, these results indicate that helix-induced chain rigidity improves the efficiency of mechanical energy transduction.


Subject(s)
Polymers , Polymers/chemistry , Protein Structure, Secondary
12.
Chemistry ; 28(7): e202103744, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34878688

ABSTRACT

Anion-exchange membrane fuel cells (AEMFCs) are promising energy conversion devices due to their high efficiency. Nonetheless, AEMFC operation time is currently limited by the low chemical stability of their polymeric anion-exchange membranes. In recent years, metallopolymers, where the metal centers assume the ion transport function, have been proposed as a chemically stable alternative. Here we present a systematic study using a polymer backbone with side-chain N-heterocyclic carbene (NHC) ligands complexed to various metals with low oxophilicity, such as copper, zinc, nickel, and gold. The golden metallopolymer, using the metal with the lowest oxophilicity, demonstrates exceptional alkaline stability, far superior to state-of-the-art quaternary ammonium cations, as well as good in situ AEMFC results. These results demonstrate that judiciously designed metallopolymers may be superior to purely organic membranes and provides a scientific base for further developments in the field.

13.
ACS Mater Au ; 2(3): 367-373, 2022 May 11.
Article in English | MEDLINE | ID: mdl-36855387

ABSTRACT

Anion-exchange membrane (AEM) fuel cells (AEMFCs) and water electrolyzers (AEMWEs) have gained strong attention of the scientific community as an alternative to expensive mainstream fuel cell and electrolysis technologies. However, in the high pH environment of the AEMFCs and AEMWEs, especially at low hydration levels, the molecular structure of most anion-conducting polymers breaks down because of the strong reactivity of the hydroxide anions with the quaternary ammonium (QA) cation functional groups that are commonly used in the AEMs and ionomers. Therefore, new highly stable QAs are needed to withstand the strong alkaline environment of these electrochemical devices. In this study, a series of isoindolinium salts with different substituents is prepared and investigated for their stability under dry alkaline conditions. We show that by modifying isoindolinium salts, steric effects could be added to change the degradation kinetics and impart significant improvement in the alkaline stability, reaching an order of magnitude improvement when all the aromatic positions are substituted. Density functional theory (DFT) calculations are provided in support of the high kinetic stability found in these substituted isoindolinium salts. This is the first time that this class of QAs has been investigated. We believe that these novel isoindolinium groups can be a good alternative in the chemical design of AEMs to overcome material stability challenges in advanced electrochemical systems.

14.
Macromol Rapid Commun ; 42(16): e2100238, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34173300

ABSTRACT

Long-term stability is a key requirement for anion-exchange membranes (AEMs) for alkaline fuel cells and electrolyzers that is yet to be fulfilled. Different cationic chemistries are being exploited to reach such a goal, and metallopolymers present the unique advantage of chemical stability towards strong nucleophiles as compared to organic cations. Yet, the few metallopolymers tested in strongly alkaline conditions or even in fuel cells still degrade. Therefore, fundamental studies can be advantageous in directing future developments towards this goal. Here, a systematic study of the effect of ligand valency is presented, using nickel-based metallopolymers on polynorbornene backbones, functionalized with multidentate pyridine ligands. Metallopolymers using a single ligand type as well as all the possible mixtures are prepared and their relative stability towards aggressive alkaline conditions compared. Metallopolymer in which nickel ions are hexacoordinated with two tridentate ligands demonstrates superior stability. More importantly, by comparing all the metallopolymers' stability, the reason behind such relative stability provides design parameters for novel metallopolymer AEMs.


Subject(s)
Nickel , Anions , Cations , Ligands
15.
Small ; 17(24): e2100712, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33987936

ABSTRACT

Porous carbon materials attract great interest in a wide range of applications such as batteries, fuel cells, and membranes, due to their large surface area, structural and compositional tunability, and chemical stability. While micropores are typically obtained when preparing carbon materials by pyrolysis, the fabrication of mesoporous, and especially macroporous carbons is more challenging, yet important for enhancing mass transport. Herein, template-free regular macroporous carbons are prepared from a mixture of unfolded (linear) and folded (single-chain nanoparticles, SCNP) polyvinylpyrrolidone chains. While having the same chemical composition, the different molecular architectures lead to phase separation even before pyrolysis, creating a dense cell architecture, which is retained upon carbonization. Upon increasing the SCNP content, the homogeneity of the pore network increases and the specific surface area is enlarged 3-5-fold, until ideal properties are obtained at 75% SCNP, as observed by high-resolution scanning electron microscopy and N2 physisorption porosimetry. The materials are further investigated as hydrazine oxidation electrocatalysts, demonstrating the link between the evolving morphology and current density. Importantly, this study demonstrates the role of polymer architecture in macroporosity templating in carbon materials, providing a new approach to develop complex carbon architectures without the need for external templating.

16.
Angew Chem Int Ed Engl ; 60(4): 2042-2046, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33044775

ABSTRACT

Single chain polymer nanoparticles (SCNP) are an attractive polymer architecture that provides functions seen in folded biomacromolecules. The generation of SCNPs, however, is limited by the requirement of a high dilution chemical step, necessitating the use of large reactors to produce processable quantities of material. Herein, the chemical folding of macromolecules into SCNPs is achieved in both batch and flow photochemical processes by the previously described photodimerization of anthracene units in polymethylmethacrylate (100 kDa) under UV irradiation at 366 nm. When employing flow chemistry, the irradiation time is readily controlled by tuning the flow rates, allowing for the precise control over the intramolecular collapse process. The flow system provides a route at least four times more efficient for SCNP formation, reaching higher intramolecular cross-linking ratios five times faster than batch operation.

17.
ACS Appl Mater Interfaces ; 12(44): 49617-49625, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33090779

ABSTRACT

Anion-exchange membrane fuel cells (AEMFCs) have attracted the attention of the scientific community during the past years, mostly because of the potential for eliminating the need for using costly platinum catalysts in the cells. However, the broad commercialization of AEMFCs is hampered by the low chemical stability of the cationic functional groups in the anion-conducting membranes required for the transportation of hydroxide ions in the cell. Improving the stability of these groups is directly connected with the ability to recognize the different mechanisms of the OH- attack. In this work, we have synthesized eight different carbazolium cationic model molecules and investigated their alkaline stability as a function of their electronic substituent properties. Given that N,N-diaryl carbazolium salts decompose through a single-electron-transfer mechanism, the change in carbazolium electron density leads to a very significant impact on their chemical stability. Substituents with very negative Hammett parameters demonstrate unparalleled stability toward dry hydroxide. This study provides guidelines for a different approach to develop stable quaternary ammonium salts for AEMFCs, making use of the unique parameters of this decomposition mechanism.

18.
Chemistry ; 26(68): 15835-15838, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-32734592

ABSTRACT

Chemical communication between macromolecules was studied by observing the controlled single chain collapse that ensues the exchange of a metal cross-linker between two polymer chains. The rhodium (I) organometallic cross-linker transfer from a low molecular weight collapsed polybutadiene to a larger polymer was followed using size exclusion chromatography. The increased effective molarity in the larger polymer seems to be the driving force for the metal migration. Thus, we demonstrate here a strategy for transferring a molecular signal that induces chain collapse of a polymer chain based on non-covalent interactions, mimicking biological behaviors reminiscent of signal transductions in proteins.


Subject(s)
Nanoparticles , Polymers , Macromolecular Substances/chemistry , Molecular Weight , Nanoparticles/chemistry , Polymers/chemistry
19.
Soft Matter ; 16(37): 8591-8601, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32785407

ABSTRACT

Polymer networks cross-linked by reversible metal-ligand interactions possess versatile mechanical properties achieved simply by varying the metal species and quantity. Although prior experiments have revealed the dependence of the network's viscoelastic behavior on the dynamics of metal-ligand interaction, a theoretical framework with quantitative relations that would enable efficient material design, is still lacking. One major challenge is isolating the effect of metal-ligand interaction from other factors in the polymer matrix. To address this challenge, we designed a linear precursor free from solvents, chain entanglements and polymer-metal phase separation to ensure that relaxation of the network is mainly governed by the dissociation and association of the metal-ligand cross-links. The rheological behavior of the networks was thoroughly characterized regarding the changes in cross-link density, binding stoichiometry and coordination stability, allowing quantitative comparison between experimental results and the sticky Rouse model. Through this process, we noticed that the presence of reversible cross-links increases the network modulus at high frequency compared to the linear polymer, and that the effective metal-ligand dissociation time increases dramatically with increasing the cross-link density. Informed by these findings, we modified the expression of the sticky Rouse model. For the polymer in which the metal center and ligands bond in a paired association, the relaxation follows our enhanced sticky Rouse model. For the polymer in which each reversible cross-link consists of multiple metal centers and ligands, the relaxation timescale is significantly extended due to greater restriction on the polymer chains. This systematic study bridges experiments and theory, providing deeper understanding of the mechanical properties of metallopolymers and facilitating material design.

20.
Chem Commun (Camb) ; 56(14): 2143-2146, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-31970346

ABSTRACT

In Nature, numerous proteins have evolved to perform similar roles, such as mechanical energy dispersion in different tissues. These biological macromolecules obtain their function from their tertiary structure, but proteins with similar roles can be quite different from each other, making it hard to define what structural features could be mimicked in synthetic materials in order to improve their performance. Here, we introduce an important protein feature - disulphide loops - into synthetic polymers and study the role of the loop size on mechanical energy dispersion. By stressing these polymers in solution, we were able to show, experimentally, that the loop size, up to a certain level, has a significant effect on the chain mechanochemical fragmentation rate, indicating it is affecting the polymer unfolding in solution prior to mechanochemical scission of the polymer backbone. Importantly, this experimental study uses homopolymers, providing information on an individual parameter - loop size - which cannot be obtained from comparing different proteins. This research emphasises the use of tailor-designed polymer-peptide hybrids to study fundamental questions on protein tertiary structures.


Subject(s)
Disulfides/chemistry , Polymers/chemical synthesis , Macromolecular Substances/chemical synthesis , Macromolecular Substances/chemistry , Molecular Structure , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...