Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 13: 1057413, 2022.
Article in English | MEDLINE | ID: mdl-36518105

ABSTRACT

The transmembrane protein Sidestep (Side) functions as a substrate-bound attractant for motor axons in Drosophila. Outgrowing motor axons recognize Side via Beaten path Ia (Beat) and migrate along Side-expressing tissues. Here, we report a structure-function analysis of these guidance molecules using a variety of mutant lines and transgenic constructs. Investigation of Side mutants shows that the exchange of a single amino acid (L241H) in the second immunoglobulin domain disturbs Side function and subcellular localization. Overexpression of Side and Beat deletion constructs in S2 cells and muscles demonstrate that the first Ig domains of both proteins are necessary for their interaction. Furthermore, subcellular distributions of several Beat constructs identify functional domains and suggest a potential posttranslational processing step in ER compartments. In fact, fusing full-length Beat at both the N- and C-terminus with GFP and mCherry, respectively, shows that the N-terminal domain is transported to the plasma membrane and exposed on the cell surface, while the C-terminal domain accumulated in the nucleus. Taken together, these results give insights into the interaction of Side and Beat and imply that Beat might be subject to proteolytic cleavage during maturation.

2.
Int J Mol Sci ; 19(10)2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30321994

ABSTRACT

Bioprinting is a novel technology that may help to overcome limitations associated with two-dimensional (2D) cell cultures and animal experiments, as it allows the production of three-dimensional (3D) tissue models composed of human cells. The present study describes the optimization of a bioink composed of alginate, gelatin and human extracellular matrix (hECM) to print human HepaRG liver cells with a pneumatic extrusion printer. The resulting tissue model was tested for its suitability for the study of transduction by an adeno-associated virus (AAV) vector and infection with human adenovirus 5 (hAdV5). We found supplementation of the basic alginate/gelatin bioink with 0.5 and 1 mg/mL hECM provides desirable properties for the printing process, the stability of the printed constructs, and the viability and metabolic functions of the printed HepaRG cells. The tissue models were efficiently transduced by AAV vectors of serotype 6, which successfully silenced an endogenous target (cyclophilin B) by means of RNA interference. Furthermore, the printed 3D model supported efficient adenoviral replication making it suitable to study virus biology and develop new antiviral compounds. We consider the approach described here paradigmatic for the development of 3D tissue models for studies including viral vectors and infectious viruses.


Subject(s)
Bioprinting/methods , Liver/cytology , Printing, Three-Dimensional/instrumentation , Tissue Engineering/methods , Alginates/chemistry , Bioprinting/instrumentation , Cell Line , Cell Survival , Extracellular Matrix/chemistry , Gelatin/chemistry , Humans , Models, Biological , Tissue Scaffolds
3.
Dev Cell ; 32(2): 181-90, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25625207

ABSTRACT

Mechanotransduction pathways are activated in response to biophysical stimuli during the development or homeostasis of organs and tissues. In zebrafish, the blood-flow-sensitive transcription factor Klf2a promotes VEGF-dependent angiogenesis. However, the means by which the Klf2a mechanotransduction pathway is regulated to prevent continuous angiogenesis remain unknown. Here we report that the upregulation of klf2 mRNA causes enhanced egfl7 expression and angiogenesis signaling, which underlies cardiovascular defects associated with the loss of cerebral cavernous malformation (CCM) proteins in the zebrafish embryo. Using CCM-protein-depleted human umbilical vein endothelial cells, we show that the misexpression of KLF2 mRNA requires the extracellular matrix-binding receptor ß1 integrin and occurs in the absence of blood flow. Downregulation of ß1 integrin rescues ccm mutant cardiovascular malformations in zebrafish. Our work reveals a ß1 integrin-Klf2-Egfl7-signaling pathway that is tightly regulated by CCM proteins. This regulation prevents angiogenic overgrowth and ensures the quiescence of endothelial cells.


Subject(s)
Cell Movement/physiology , Hemangioma, Cavernous, Central Nervous System/metabolism , Integrin beta1/metabolism , Kruppel-Like Transcription Factors/metabolism , Neovascularization, Pathologic/metabolism , Proteins/metabolism , Zebrafish Proteins/metabolism , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Cell Adhesion/physiology , Cell Movement/genetics , Central Nervous System Neoplasms/metabolism , EGF Family of Proteins , Hemangioma, Cavernous, Central Nervous System/genetics , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Mechanotransduction, Cellular/physiology , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/metabolism , RNA, Small Interfering/genetics , Signal Transduction/physiology , Zebrafish
4.
Dev Cell ; 30(4): 367-77, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25158852

ABSTRACT

During heart development, the onset of heartbeat and blood flow coincides with a ballooning of the cardiac chambers. Here, we have used the zebrafish as a vertebrate model to characterize chamber ballooning morphogenesis of the endocardium, a specialized population of endothelial cells that line the interior of the heart. By combining functional manipulations, fate mapping studies, and high-resolution imaging, we show that endocardial growth occurs without an influx of external cells. Instead, endocardial cell proliferation is regulated, both by blood flow and by Bmp signaling, in a manner independent of vascular endothelial growth factor (VEGF) signaling. Similar to myocardial cells, endocardial cells obtain distinct chamber-specific and inner- versus outer-curvature-specific surface area sizes. We find that the hemodynamic-sensitive transcription factor Klf2a is involved in regulating endocardial cell morphology. These findings establish the endocardium as the flow-sensitive tissue in the heart with a key role in adapting chamber growth in response to the mechanical stimulus of blood flow.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Endocardium/embryology , Hemodynamics , Kruppel-Like Transcription Factors/metabolism , Morphogenesis , Zebrafish Proteins/metabolism , Animals , Cell Movement , Cell Proliferation , Endocardium/cytology , Endocardium/metabolism , Endothelial Cells/metabolism , Endothelial Cells/physiology , Kruppel-Like Transcription Factors/genetics , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Zebrafish , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...