Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2802: 547-571, 2024.
Article in English | MEDLINE | ID: mdl-38819571

ABSTRACT

As genomic and related data continue to expand, research biologists are often hampered by the computational hurdles required to analyze their data. The National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Centers (BRC) to assist researchers with their analysis of genome sequence and other omics-related data. Recently, the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD), and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs merged to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) at https://www.bv-brc.org/ . The combined BV-BRC leverages the functionality of the original resources for bacterial and viral research communities with a unified data model, enhanced web-based visualization and analysis tools, and bioinformatics services. Here we demonstrate how antimicrobial resistance data can be analyzed in the new resource.


Subject(s)
Bacteria , Computational Biology , Databases, Genetic , Drug Resistance, Bacterial , Genomics , Genomics/methods , Computational Biology/methods , Drug Resistance, Bacterial/genetics , Bacteria/genetics , Bacteria/drug effects , Humans , Software , Genome, Bacterial , Anti-Bacterial Agents/pharmacology , Web Browser , United States , National Institute of Allergy and Infectious Diseases (U.S.)
2.
Nucleic Acids Res ; 51(D1): D678-D689, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36350631

ABSTRACT

The National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Center (BRC) program to assist researchers with analyzing the growing body of genome sequence and other omics-related data. In this report, we describe the merger of the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD) and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) https://www.bv-brc.org/. The combined BV-BRC leverages the functionality of the bacterial and viral resources to provide a unified data model, enhanced web-based visualization and analysis tools, bioinformatics services, and a powerful suite of command line tools that benefit the bacterial and viral research communities.


Subject(s)
Genomics , Software , Viruses , Humans , Bacteria/genetics , Computational Biology , Databases, Genetic , Influenza, Human , Viruses/genetics
3.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-34379107

ABSTRACT

Antimicrobial resistance (AMR) is a major global health threat that affects millions of people each year. Funding agencies worldwide and the global research community have expended considerable capital and effort tracking the evolution and spread of AMR by isolating and sequencing bacterial strains and performing antimicrobial susceptibility testing (AST). For the last several years, we have been capturing these efforts by curating data from the literature and data resources and building a set of assembled bacterial genome sequences that are paired with laboratory-derived AST data. This collection currently contains AST data for over 67 000 genomes encompassing approximately 40 genera and over 100 species. In this paper, we describe the characteristics of this collection, highlighting areas where sampling is comparatively deep or shallow, and showing areas where attention is needed from the research community to improve sampling and tracking efforts. In addition to using the data to track the evolution and spread of AMR, it also serves as a useful starting point for building machine learning models for predicting AMR phenotypes. We demonstrate this by describing two machine learning models that are built from the entire dataset to show where the predictive power is comparatively high or low. This AMR metadata collection is freely available and maintained on the Bacterial and Viral Bioinformatics Center (BV-BRC) FTP site ftp://ftp.bvbrc.org/RELEASE_NOTES/PATRIC_genomes_AMR.txt.


Subject(s)
Computational Biology/methods , Databases, Genetic , Drug Resistance, Microbial , Genomics/methods , Microbial Sensitivity Tests , Artificial Intelligence , Bacteria/drug effects , Bacteria/genetics , Genome, Bacterial , Humans , Laboratories , Machine Learning , Phenotype
4.
Nucleic Acids Res ; 48(D1): D606-D612, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31667520

ABSTRACT

The PathoSystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center funded by the National Institute of Allergy and Infectious Diseases (https://www.patricbrc.org). PATRIC supports bioinformatic analyses of all bacteria with a special emphasis on pathogens, offering a rich comparative analysis environment that provides users with access to over 250 000 uniformly annotated and publicly available genomes with curated metadata. PATRIC offers web-based visualization and comparative analysis tools, a private workspace in which users can analyze their own data in the context of the public collections, services that streamline complex bioinformatic workflows and command-line tools for bulk data analysis. Over the past several years, as genomic and other omics-related experiments have become more cost-effective and widespread, we have observed considerable growth in the usage of and demand for easy-to-use, publicly available bioinformatic tools and services. Here we report the recent updates to the PATRIC resource, including new web-based comparative analysis tools, eight new services and the release of a command-line interface to access, query and analyze data.


Subject(s)
Bacteria/genetics , Computational Biology/methods , Databases, Genetic , Algorithms , Animals , Caenorhabditis elegans/genetics , Chickens/genetics , Drosophila melanogaster/genetics , Host-Pathogen Interactions/genetics , Humans , Internet , Macaca mulatta/genetics , Metagenomics , Mice , National Institute of Allergy and Infectious Diseases (U.S.) , Phenotype , Phylogeny , Rats , Swine/genetics , United States , Zebrafish/genetics
5.
Brief Bioinform ; 20(4): 1094-1102, 2019 07 19.
Article in English | MEDLINE | ID: mdl-28968762

ABSTRACT

The Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org) is designed to provide researchers with the tools and services that they need to perform genomic and other 'omic' data analyses. In response to mounting concern over antimicrobial resistance (AMR), the PATRIC team has been developing new tools that help researchers understand AMR and its genetic determinants. To support comparative analyses, we have added AMR phenotype data to over 15 000 genomes in the PATRIC database, often assembling genomes from reads in public archives and collecting their associated AMR panel data from the literature to augment the collection. We have also been using this collection of AMR metadata to build machine learning-based classifiers that can predict the AMR phenotypes and the genomic regions associated with resistance for genomes being submitted to the annotation service. Likewise, we have undertaken a large AMR protein annotation effort by manually curating data from the literature and public repositories. This collection of 7370 AMR reference proteins, which contains many protein annotations (functional roles) that are unique to PATRIC and RAST, has been manually curated so that it projects stably across genomes. The collection currently projects to 1 610 744 proteins in the PATRIC database. Finally, the PATRIC Web site has been expanded to enable AMR-based custom page views so that researchers can easily explore AMR data and design experiments based on whole genomes or individual genes.


Subject(s)
Computational Biology/methods , Databases, Genetic , Drug Resistance, Microbial/genetics , Systems Integration , Computational Biology/trends , Databases, Genetic/statistics & numerical data , Genome, Microbial , Humans , Internet , Molecular Sequence Annotation
6.
Nucleic Acids Res ; 45(D1): D535-D542, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27899627

ABSTRACT

The Pathosystems Resource Integration Center (PATRIC) is the bacterial Bioinformatics Resource Center (https://www.patricbrc.org). Recent changes to PATRIC include a redesign of the web interface and some new services that provide users with a platform that takes them from raw reads to an integrated analysis experience. The redesigned interface allows researchers direct access to tools and data, and the emphasis has changed to user-created genome-groups, with detailed summaries and views of the data that researchers have selected. Perhaps the biggest change has been the enhanced capability for researchers to analyze their private data and compare it to the available public data. Researchers can assemble their raw sequence reads and annotate the contigs using RASTtk. PATRIC also provides services for RNA-Seq, variation, model reconstruction and differential expression analysis, all delivered through an updated private workspace. Private data can be compared by 'virtual integration' to any of PATRIC's public data. The number of genomes available for comparison in PATRIC has expanded to over 80 000, with a special emphasis on genomes with antimicrobial resistance data. PATRIC uses this data to improve both subsystem annotation and k-mer classification, and tags new genomes as having signatures that indicate susceptibility or resistance to specific antibiotics.


Subject(s)
Bacteria/genetics , Computational Biology/methods , Databases, Genetic , Genome, Bacterial , Genomics/methods , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Molecular Sequence Annotation , Proteome , Proteomics/methods , Software , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...