Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Exp Appl Acarol ; 67(2): 269-87, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26188857

ABSTRACT

Ticks transmit infectious agents to humans and other animals. Genetic manipulation of vectors like ticks could enhance the development of alternative disease control strategies. Transgene expression using the phytopathogen Agrobacterium tumefaciens has been shown to promote the genetic modification of non-plant cells. In the present work we developed T-DNA constructs for A. tumefaciens to mediate transgene expression in HeLa cells as well as Rhipicephalus microplus tick cells. Translational fusions eGfp:eGfp or Salp15:eGfp, including the enhanced-green fluorescent protein and the Ixodes scapularis salivary factor SALP15 genes, were constructed using the CaMV 35S (cauliflower mosaic virus) promoter, "PBm" tick promoter (R. microplus pyrethroid metabolizing esterase gene) or the Simian Virus SV40 promoter. Confocal microscopy, RT-PCR and Western-blot assays demonstrated transgene(s) expression in both cell lines. Transgene expression was also achieved in vivo, in both R. microplus and I. scapularis larvae utilizing a soaking method including the A. tumefaciens donor cells and confirmed by nested-RT-PCR showing eGfp or Salp15 poly-A-mRNA(s). This strategy opens up a new avenue to express exogenous genes in ticks and represents a potential breakthrough for the study of tick-host pathophysiology.


Subject(s)
DNA, Bacterial/genetics , Gene Expression , Ixodes/genetics , Rhipicephalus/genetics , Transgenes , Agrobacterium tumefaciens/genetics , Animals , Arthropod Proteins/genetics , Arthropod Proteins/metabolism , HeLa Cells , Humans , Ixodes/growth & development , Larva/genetics , Rhipicephalus/growth & development
2.
Microb Ecol ; 62(1): 134-42, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21611689

ABSTRACT

Members of the Coxiella genus are intracellular bacteria that can infect a variety of animals including humans. A symbiotic Coxiella was recently described in Amblyomma americanum ticks in the Northern Hemisphere with no further investigations of other Amblyomma species in other geographic regions. These ixodid ticks represent a group of important vectors for human infectious agents. In the present work, we have demonstrated that symbiotic Coxiella (SCox) are widespread, occurring in South America and infecting 100% of all life stages and eggs of the Cayenne ticks Amblyomma cajennense from Brazil and the USA. Using light microscopy, in situ hybridization, and PCR, we demonstrated SCox in salivary glands, ovaries, and the intestines of A. cajennense. These symbionts are vertically and transtadially transmitted in laboratory reared A. cajennense, and quantitative PCR analyses indicate that SCox are more abundant in adult female ticks, reaching values corresponding to an 11×, 38×, and 200× increase in SCox 16S rRNA gene copy number in unfed females, compared to unfed nymphs, larvae, and eggs, respectively. Phylogenetic analyses showed distinct SCox subpopulations in the USA and Brazil and demonstrated that SCox bacteria do not group with pathogenic Coxiella burnetii.


Subject(s)
Coxiella/isolation & purification , Coxiella/physiology , Ixodidae/microbiology , Symbiosis , Animals , Coxiella/classification , Coxiella/genetics , Female , Ixodidae/physiology , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL