Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
Acta Pharm Sin B ; 13(5): 2152-2175, 2023 May.
Article in English | MEDLINE | ID: mdl-37250172

ABSTRACT

We describe the development of quinolylnitrones (QNs) as multifunctional ligands inhibiting cholinesterases (ChEs: acetylcholinesterase and butyrylcholinesterase-hBChE) and monoamine oxidases (hMAO-A/B) for the therapy of neurodegenerative diseases. We identified QN 19, a simple, low molecular weight nitrone, that is readily synthesized from commercially available 8-hydroxyquinoline-2-carbaldehyde. Quinolylnitrone 19 has no typical pharmacophoric element to suggest ChE or MAO inhibition, yet unexpectedly showed potent inhibition of hBChE (IC50 = 1.06 ± 0.31 nmol/L) and hMAO-B (IC50 = 4.46 ± 0.18 µmol/L). The crystal structures of 19 with hBChE and hMAO-B provided the structural basis for potent binding, which was further studied by enzyme kinetics. Compound 19 acted as a free radical scavenger and biometal chelator, crossed the blood-brain barrier, was not cytotoxic, and showed neuroprotective properties in a 6-hydroxydopamine cell model of Parkinson's disease. In addition, in vivo studies showed the anti-amnesic effect of 19 in the scopolamine-induced mouse model of AD without adverse effects on motoric function and coordination. Importantly, chronic treatment of double transgenic APPswe-PS1δE9 mice with 19 reduced amyloid plaque load in the hippocampus and cortex of female mice, underscoring the disease-modifying effect of QN 19.

2.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36139811

ABSTRACT

Nowadays, most stroke patients are treated exclusively with recombinant tissue plasminogen activator, a drug with serious side effects and limited therapeutic window. For this reason, and because of the known effects of oxidative stress on stroke, a more tolerable and efficient therapy for stroke is being sought that focuses on the control and scavenging of highly toxic reactive oxygen species by appropriate small molecules, such as nitrones with antioxidant properties. In this context, herein we report here the synthesis, antioxidant, and neuroprotective properties of twelve novel polyfunctionalized α-phenyl-tert-butyl(benzyl)nitrones. The antioxidant capacity of these nitrones was investigated by various assays, including the inhibition of lipid peroxidation induced by AAPH, hydroxyl radical scavenging assay, ABTS+-decoloration assay, DPPH scavenging assay, and inhibition of soybean lipoxygenase. The inhibitory effect on monoamine oxidases and cholinesterases and inhibition of ß-amyloid aggregation were also investigated. As a result, (Z)-N-benzyl-1-(2-(3-(piperidin-1-yl)propoxy)phenyl)methanimine oxide (5) was found to be one of the most potent antioxidants, with high ABTS+ scavenging activity (19%), and potent lipoxygenase inhibitory capacity (IC50 = 10 µM), selectively inhibiting butyrylcholinesterase (IC50 = 3.46 ± 0.27 µM), and exhibited neuroprotective profile against the neurotoxicant okadaic acid in a neuronal damage model. Overall, these results pave the way for the further in-depth analysis of the neuroprotection of nitrone 5 in in vitro and in vivo models of stroke and possibly other neurodegenerative diseases in which oxidative stress is identified as a critical player.

3.
Antioxidants (Basel) ; 11(8)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36009295

ABSTRACT

We report herein the synthesis and antioxidant profile of nine novel heterobisnitrones (hBNs) as new α-phenyl-tert-butylnitrone (PBN) analogues. The synthesized hBNs 1-9 were evaluated for their antioxidant activity using different in vitro techniques, while they were also tested as inhibitors of soybean LOX, as an indication of their anti-inflammatory effect. Nitrone hBN9 is the most potent antioxidant presenting higher anti-lipid peroxidation and hydroxyl radicals scavenging activities as well as higher lipoxygenase inhibition. In silico calculations reveal that hBN9 follows Lipinski's rule of five and that the molecule is able to penetrate theoretically the brain. All these results led us to propose hBN9 as a new potent antioxidant nitrone.

4.
J Med Chem ; 65(8): 6250-6260, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35403430

ABSTRACT

NLRP3 is involved in the pathophysiology of several inflammatory diseases. Therefore, there is high current interest in the clinical development of new NLRP3 inflammasome small inhibitors to treat these diseases. Novel N-sulfonylureas were obtained by the replacement of the hexahydroindacene moiety of the previously described NLRP3 inhibitor MCC950. These new derivatives show moderate to high potency in inhibiting IL-1ß release in vitro. The greatest effect was observed for compound 4b, which was similar to MCC950. Moreover, compound 4b was able to reduce caspase-1 activation, oligomerization of ASC, and therefore, IL-1ß processing. Additional in silico predictions confirmed the safety profile of compound 4b, and in vitro studies in AML12 hepatic cells confirmed the absence of toxicological effects. Finally, we evaluated in vivo anti-inflammatory properties of compound 4b, which showed a significant anti-inflammatory effect and reduced mechanical hyperalgesia at 3 and 10 mg/kg (i.p.) in an in vivo mouse model of gout.


Subject(s)
Gout , Inflammasomes , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Hyperalgesia , Interleukin-1beta , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein
5.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34577561

ABSTRACT

Cerebrovascular diseases such as ischemic stroke are known to exacerbate dementia caused by neurodegenerative pathologies such as Alzheimer's disease (AD). Besides, the increasing number of patients surviving stroke makes it necessary to treat the co-occurrence of these two diseases with a single and combined therapy. For the development of new dual therapeutic agents, eight hybrid quinolylnitrones have been designed and synthesized by the juxtaposition of selected pharmacophores from our most advanced lead-compounds for ischemic stroke and AD treatment. Biological analyses looking for efficient neuroprotective effects in suitable phenotypic assays led us to identify MC903 as a new small quinolylnitrone for the potential dual therapy of stroke and AD, showing strong neuroprotection on (i) primary cortical neurons under oxygen-glucose deprivation/normoglycemic reoxygenation as an experimental ischemia model; (ii), neuronal line cells treated with rotenone/oligomycin A, okadaic acid or ß-amyloid peptide Aß25-35, modeling toxic insults found among the effects of AD.

6.
RSC Med Chem ; 12(6): 1000-1004, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34223165

ABSTRACT

Sigma (σ) receptors represent attractive targets for the development of potential agents for the treatment of several disorders, including Alzheimer's disease and neuropathic pain. In the search for multitarget small molecules (MSMs) against such disorders, we have re-discovered chromenones as new affine σ1/σ2 ligands. 6-(4-(Piperidin-1-yl)butoxy)-4H-chromen-4-one (7), a previously identified MSM with potent dual-target activities against acetylcholinesterase and monoamine oxidase B, also exhibited σ1/σ2 affinity. 6-(3-(Azepan-1-yl)propoxy)-4H-chromen-4-one (20) showed a K i value for σ1 of 27.2 nM (selectivity (σ1/σ2) = 28), combining the desired σ1 receptor affinity with a dual inhibitory capacity against both acetyl- and butyrylcholinesterase. 6-((5-Morpholinopentyl)oxy)-4H-chromen-4-one (12) was almost equipotent to S1RA, an established σ1 receptor antagonist.

7.
Molecules ; 26(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672652

ABSTRACT

Herein, we report the neuroprotective and antioxidant activity of 1,1'-biphenyl nitrones (BPNs) 1-5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1'-biphenyl]-4-carbaldehyde and [1,1'-biphenyl]-4,4'-dicarbaldehyde. The neuroprotection of BPNs1-5 has been measured against oligomycin A/rotenone and in an oxygen-glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1-5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 µM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen-glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 µM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 µM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 µM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.


Subject(s)
Antioxidants/pharmacology , Cyclic N-Oxides/pharmacology , Lipoxygenase Inhibitors/pharmacology , Lipoxygenase/metabolism , Neuroprotective Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Cyclic N-Oxides/chemical synthesis , Cyclic N-Oxides/chemistry , Humans , Hydroxyl Radical/antagonists & inhibitors , Lipid Peroxidation/drug effects , Lipoxygenase Inhibitors/chemical synthesis , Lipoxygenase Inhibitors/chemistry , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Tumor Cells, Cultured
8.
Chem Rec ; 21(1): 162-174, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33169934

ABSTRACT

Herein we have reviewed our recent developments for the identification of new tacrine analogues for Alzheimer's disease (AD) therapy. Tacrine, the first cholinesterase inhibitor approved for AD treatment, did not stop the progression of AD, producing only some cognitive improvements, but exhibited secondary effects mainly due to its hepatotoxicity. Thus, the drug was withdrawn from the clinics administration. Since then, many publications have described non-hepatotoxic tacrines, and in addition, important efforts have been made to design multitarget tacrines by combining their cholinesterase inhibition profile with the modulation of other biological targets involved in AD.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Tacrine/analogs & derivatives , Tacrine/pharmacology , Acetylcholinesterase/metabolism , Cell Line, Tumor , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/metabolism , Humans , Molecular Docking Simulation , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/metabolism , Protein Binding , Tacrine/metabolism
9.
Int J Mol Sci ; 21(21)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114714

ABSTRACT

Herein we report the synthesis, antioxidant and neuroprotective power of homo-tris-nitrones (HTN) 1-3, designed on the hypothesis that the incorporation of a third nitrone motif into our previously identified homo-bis-nitrone 6 (HBN6) would result in an improved and stronger neuroprotection. The neuroprotection of HTNs1-3, measured against oligomycin A/rotenone, showed that HTN2 was the best neuroprotective agent at a lower dose (EC50 = 51.63 ± 4.32 µM), being similar in EC50 and maximal activity to α-phenyl-N-tert-butylnitrone (PBN) and less potent than any of HBNs 4-6. The results of neuroprotection in an in vitro oxygen glucose deprivation model showed that HTN2 was the most powerful (EC50 = 87.57 ± 3.87 µM), at lower dose, but 50-fold higher than its analogous HBN5, and ≈1.7-fold less potent than PBN. HTN3 had a very good antinecrotic (IC50 = 3.47 ± 0.57 µM), antiapoptotic, and antioxidant (EC50 = 6.77 ± 1.35 µM) profile, very similar to that of its analogous HBN6. In spite of these results, and still being attractive neuroprotective agents, HTNs 2 and 3 do not have better neuroprotective properties than HBN6, but clearly exceed that of PBN.


Subject(s)
Antioxidants/chemical synthesis , Cyclic N-Oxides/chemistry , Neurons/cytology , Neuroprotective Agents/chemical synthesis , Nitrogen Oxides/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Caspase 3/metabolism , Cell Line , Cell Survival/drug effects , Humans , Molecular Structure , Neurons/drug effects , Neurons/metabolism , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Nitrogen Oxides/chemistry , Nitrogen Oxides/pharmacology , Oligomycins/adverse effects , Reactive Oxygen Species/metabolism , Rotenone/adverse effects
10.
Sci Rep ; 10(1): 14150, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32843666

ABSTRACT

We herein report the synthesis, antioxidant power and neuroprotective properties of nine homo-bis-nitrones HBNs 1-9 as alpha-phenyl-N-tert-butylnitrone (PBN) analogues for stroke therapy. In vitro neuroprotection studies of HBNs 1-9 against Oligomycin A/Rotenone and in an oxygen-glucose-deprivation model of ischemia in human neuroblastoma cell cultures, indicate that (1Z,1'Z)-1,1'-(1,3-phenylene)bis(N-benzylmethanimine oxide) (HBN6) is a potent neuroprotective agent that prevents the decrease in neuronal metabolic activity (EC50 = 1.24 ± 0.39 µM) as well as necrotic and apoptotic cell death. HBN6 shows strong hydroxyl radical scavenger power (81%), and capacity to decrease superoxide production in human neuroblastoma cell cultures (maximal activity = 95.8 ± 3.6%), values significantly superior to the neuroprotective and antioxidant properties of the parent PBN. The higher neuroprotective ability of HBN6 has been rationalized by means of Density Functional Theory calculations. Calculated physicochemical and ADME properties confirmed HBN6 as a hit-agent showing suitable drug-like properties. Finally, the contribution of HBN6 to brain damage prevention was confirmed in a permanent MCAO setting by assessing infarct volume outcome 48 h after stroke in drug administered experimental animals, which provides evidence of a significant reduction of the brain lesion size and strongly suggests that HBN6 is a potential neuroprotective agent against stroke.


Subject(s)
Brain Ischemia/drug therapy , Cyclic N-Oxides/chemistry , Free Radical Scavengers/therapeutic use , Neurons/drug effects , Neuroprotection/drug effects , Neuroprotective Agents/therapeutic use , Nitrogen Oxides/therapeutic use , Animals , Apoptosis/drug effects , Brain Ischemia/chemically induced , Cell Line, Tumor , Disease Models, Animal , Drug Evaluation, Preclinical , Free Radical Scavengers/chemical synthesis , Free Radical Scavengers/pharmacology , Glucose/pharmacology , Infarction, Middle Cerebral Artery/drug therapy , Lipid Peroxidation/drug effects , Lipoxygenase Inhibitors/pharmacology , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Neuroblastoma/pathology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Nitrogen Oxides/chemical synthesis , Nitrogen Oxides/pharmacology , Oligomycins/toxicity , Oxygen/pharmacology , Rotenone/toxicity
11.
Molecules ; 25(14)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668671

ABSTRACT

Alzheimer's disease (AD) is multifactorial disease characterized by the accumulation of abnormal extracellular deposits of amyloid-beta (Aß) peptide, and intracellular neurofibrillary tangles (NFTs), along with dramatic neuronal death and decreased levels of choline acetyltransferase. Given the limited therapeutic success of available drugs, it is urgent to explore all the opportunities available to combat this illness. Among them, the discovery of new heterocyclic scaffolds binding different receptors involved in AD should offer structural diversity and new therapeutic solutions. In this context, this work describes new triazolopyridopyrimidine easily prepared in good yields showing anticholinesterase inhibition and strong antioxidant power, particularly the most balanced: 6-amino-5-(4-methoxyphenyl)-2-phenyl-[1,2,4]triazolo[1',5':1,6] pyrido[2,3-d]pyrimidine-4-carbonitrile(3c) with IC50 equal to 1.32 µM against AChE and oxygen radical absorbance capacity (ORAC) value equal to 4.01 Trolox equivalents (TE); thus representing a new and very promising hit-triazolopyridopyrimidine for AD therapy.


Subject(s)
Antioxidants/chemical synthesis , Cholinesterase Inhibitors/chemical synthesis , Quinoxalines/chemical synthesis , Alzheimer Disease/drug therapy , Drug Discovery , Humans
12.
J Med Chem ; 62(24): 11416-11422, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31724859

ABSTRACT

New tritarget small molecules combining Ca2+ channels blockade, cholinesterase, and H3 receptor inhibition were obtained by multicomponent synthesis. Compound 3p has been identified as a very promising lead, showing good Ca2+ channels blockade activity (IC50 = 21 ± 1 µM), potent affinity against hH3R (Ki = 565 ± 62 nM), a moderate but selective hBuChE inhibition (IC50 = 7.83 ± 0.10 µM), strong antioxidant power (3.6 TE), and ability to restore cognitive impairment induced by lipopolysaccharide.


Subject(s)
Alzheimer Disease/drug therapy , Calcium Channel Blockers/pharmacology , Cholinesterase Inhibitors/pharmacology , Neuroprotective Agents/pharmacology , Receptors, Histamine H3/chemistry , Small Molecule Libraries/pharmacology , Vasodilator Agents/pharmacology , Alzheimer Disease/metabolism , Animals , Calcium Channel Blockers/chemistry , Cholinesterase Inhibitors/chemistry , Humans , Memory Disorders/drug therapy , Memory Disorders/metabolism , Mice , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroprotective Agents/chemistry , Small Molecule Libraries/chemistry , Tumor Cells, Cultured , Vasodilator Agents/chemistry
13.
Molecules ; 24(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999586

ABSTRACT

We report the synthesis and relevant pharmacological properties of the quinoxalinetacrine (QT) hybrid QT78 in a project targeted to identify new non-hepatotoxic tacrine derivatives for Alzheimer's disease therapy. We have found that QT78 is less toxic than tacrine at high concentrations (from 100 µM to 1 mM), less potent than tacrine as a ChE inhibitor, but shows selective BuChE inhibition (IC50 (hAChE) = 22.0 ± 1.3 µM; IC50 (hBuChE) = 6.79 ± 0.33 µM). Moreover, QT78 showed effective and strong neuroprotection against diverse toxic stimuli, such as rotenone plus oligomycin-A or okadaic acid, of biological significance for Alzheimer's disease.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors , Tacrine , Alzheimer Disease/enzymology , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacokinetics , Cholinesterase Inhibitors/pharmacology , Hep G2 Cells , Humans , Tacrine/chemistry , Tacrine/pharmacokinetics , Tacrine/pharmacology
14.
ACS Chem Neurosci ; 10(6): 2703-2706, 2019 06 19.
Article in English | MEDLINE | ID: mdl-30943011

ABSTRACT

We describe here the preparation, neuroprotective analysis, and antioxidant capacity of 11 novel quinolylnitrones (QN). The neuroprotective analysis of QN1-11 in an oxygen-glucose deprivation model, in primary neuronal cultures, has been determined, allowing us to identify QN6 as a very potent neuroprotective agent, showing significant high value at 0.5 and 10 µM (86.2%), a result in good agreement with the observed strong hydroxyl radical scavenger of QN6.


Subject(s)
Antioxidants/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Humans , Nitrogen Oxides/pharmacology , Quinolines/pharmacology
15.
Bioorg Chem ; 86: 445-451, 2019 05.
Article in English | MEDLINE | ID: mdl-30771691

ABSTRACT

In this work six PBN-related indanonitrones 1-6 have been designed, synthesized, and their neuroprotection capacity tested in vitro, under OGD conditions, in SH-SY5Y human neuroblastoma cell cultures. As a result, we have identified indanonitrones 1, 3 and 4 (EC50 = 6.64 ±â€¯0.28 µM) as the most neuroprotective agents, and in particular, among them, indanonitrone 4 was also the most potent and balanced nitrone, showing antioxidant activity in three experiments [LOX (100 µM), APPH (51%), DPPH (36.5%)], being clearly more potent antioxidant agent than nitrone PBN. Consequently, we have identified (Z)-5-hydroxy-N-methyl-2,3-dihydro-1H-inden-1-imine oxide (4) as a hit-molecule for further investigation.


Subject(s)
Antioxidants/pharmacology , Cyclic N-Oxides/pharmacology , Indans/pharmacology , Neuroprotective Agents/pharmacology , Nitrogen Oxides/pharmacology , Amidines/antagonists & inhibitors , Amidines/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Biphenyl Compounds/antagonists & inhibitors , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclic N-Oxides/chemistry , Dose-Response Relationship, Drug , Humans , Indans/chemical synthesis , Indans/chemistry , Lipid Peroxidation/drug effects , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Nitrogen Oxides/chemical synthesis , Nitrogen Oxides/chemistry , Picrates/antagonists & inhibitors , Structure-Activity Relationship , Tumor Cells, Cultured
16.
J Enzyme Inhib Med Chem ; 34(1): 479-489, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30712420

ABSTRACT

We describe herein the design, multicomponent synthesis and biological studies of new donepezil + chromone + melatonin hybrids as potential agents for Alzheimer's disease (AD) therapy. We have identified compound 14n as promising multitarget small molecule showing strong BuChE inhibition (IC50 = 11.90 ± 0.05 nM), moderate hAChE (IC50 = 1.73 ± 0.34 µM), hMAO A (IC50 = 2.78 ± 0.12 µM), and MAO B (IC50 = 21.29 ± 3.85 µM) inhibition, while keeping a strong antioxidant power (3.04 TE, ORAC test). Consequently, the results reported here support the development of new multitarget Donepezil + Chromone + Melatonin hybrids, such as compound 14n, as a potential drug for AD patients cure.


Subject(s)
Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Chromones/pharmacology , Donepezil/pharmacology , Melatonin/pharmacology , Monoamine Oxidase Inhibitors/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Butyrylcholinesterase/metabolism , Cholinesterase Inhibitors/chemical synthesis , Cholinesterase Inhibitors/chemistry , Chromones/chemistry , Donepezil/chemistry , Dose-Response Relationship, Drug , Humans , Melatonin/chemistry , Molecular Docking Simulation , Molecular Structure , Monoamine Oxidase/metabolism , Monoamine Oxidase Inhibitors/chemical synthesis , Monoamine Oxidase Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL