Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Nutrients ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38068824

ABSTRACT

Nowadays, it has been amply demonstrated how an appropriate diet and lifestyle are essential for preserving wellbeing and preventing illnesses [...].


Subject(s)
Diet , Oxidative Stress , Humans , Inflammation
2.
Nutrients ; 15(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686778

ABSTRACT

BACKGROUND: Agrifood waste products are often considered rich sources of bioactive compounds that can be conveniently recovered. Due to these peculiar characteristics, the study of these waste products is attracting great interest in nutraceutical research. Olive mill wastewaters (OMWWs) are generated by extra virgin olive oil (EVOO) production, and they pose environmental challenges due to their disposal. This study aimed to characterize the polyphenolic profile and to evaluate the nutraceutical properties of OMWW extracts from two Tuscan olive cultivars, Leccino (CL) and Frantoio (CF), collected during different time points in EVOO production. METHOD: After a liquid-liquid extraction, the HPLC and LC-MS/MS analysis of OMWW extracts confirmed the presence of 18 polyphenolic compounds. RESULTS: The polyphenol composition varied between the cultivars and during maturation stages. Notably, oleacein was detected at remarkably high levels in CL1 and CF1 extracts (314.628 ± 19.535 and 227.273 ± 3.974 µg/mg, respectively). All samples demonstrated scavenging effects on free radicals (DPPH and ABTS assays) and an anti-inflammatory potential by inhibiting cyclooxygenase (COX) enzymes. CONCLUSIONS: This study highlights the nutraceutical potential of OMWW extracts, emphasizing their antioxidant, antiradical, and anti-inflammatory activities. The results demonstrate the influence of olive cultivar, maturation stage, and extraction process on the polyphenolic composition and the bioactivity of OMWW extracts. These findings support a more profitable reuse of OMWW as an innovative, renewable, and low-cost source of dietary polyphenols with potential applications as functional ingredients in the development of dietary supplements, as well as in the pharmaceutical and cosmetics industries.


Subject(s)
Olea , Wastewater , Polyphenols , Chromatography, Liquid , Tandem Mass Spectrometry , Dietary Supplements , Waste Products , Plant Extracts/pharmacology
3.
Molecules ; 28(13)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37446813

ABSTRACT

(1) Background: In recent years, numerous studies have highlighted the beneficial effects of extra virgin olive oil (EVOO) as an active ingredient against chronic diseases. The properties of EVOO are due to its peculiar composition, mainly to its rich content of polyphenols. In fact, polyphenols may contribute to counteract oxidative stress, which often accompanies chronic diseases. In this work, the antioxidant effects of high-value polyphenol oleocanthal (OC) and its main metabolites, tyrosol (Tyr) and oleocanthalic acid (OA), respectively, have been investigated along with their impact on cell viability. (2) Methods: OC, Tyr, and OA have been evaluated regarding antiradical properties in term of scavenging capacity towards biologically relevant reactive species, including O2●-, HOCl, and ROO●, as well as their antioxidant/antiradical capacity (FRAP, DPPH●, ABTS●+). Moreover, the ability to permeate the intestinal membrane was assessed by an intestinal co-culture model composed by Caco-2 and HT29-MTX cell lines. (3) Results: The capacity of OC and Tyr as radical oxygen species (ROS) scavengers, particularly regarding HOCl and O2●-, was clearly demonstrated. Furthermore, the ability to permeate the intestinal co-culture model was plainly proved by the good permeations (>50%) achieved by all compounds. (4) Conclusions: OC, OA, and Tyr revealed promising properties against oxidative diseases.


Subject(s)
Antioxidants , Polyphenols , Humans , Antioxidants/pharmacology , Caco-2 Cells , Polyphenols/pharmacology , Olive Oil
4.
Nutrients ; 15(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36904073

ABSTRACT

(1) Background: Nowadays, the health-promoting properties of extra virgin olive oil (EVOO), including the antioxidant and anti-inflammatory actions, are well recognized and mainly attributed to the different polyphenols, such as oleocanthal and oleacein. In EVOO production, olive leaves represent a high value by-product, showing a wide spectrum of beneficial effects due to the presence of polyphenols, especially oleuropein. Here we report the study of olive leaf extract (OLE)-enriched EVOO extracts, obtained by adding different percentages of OLE to EVOO in order to ameliorate their nutraceutical activities. (2) Methods: The polyphenolic content of the EVOO/OLE extracts was analyzed by HPLC and the Folin-Ciocalteau assay. For further biological testing, an 8% OLE-enriched EVOO extract was chosen. Therefore, antioxidant effects were evaluated by three different methods (DPPH, ABTS, and FRAP), and the anti-inflammatory properties were assessed in terms of cyclooxygenase activity inhibition. (3) Results: The antioxidant and anti-inflammatory profiles of the new EVOO/OLE extract are significantly improved compared to those of EVOO extract; (4) Conclusions: The combination of OLE and EVOO extract can lead to an extract enriched in terms of bioactive polyphenols and endowed with better biological properties than the singular EVOO extract. Therefore, it may represent a new complement in the nutraceutical field.


Subject(s)
Anti-Inflammatory Agents , Dietary Supplements , Olive Oil , Plant Oils , Plant Extracts , Anti-Inflammatory Agents/pharmacology , Polyphenols , Plant Leaves/chemistry , Antioxidants/pharmacology , Plant Oils/pharmacology
5.
Biomed Pharmacother ; 157: 114014, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36379119

ABSTRACT

Liver fibrosis is the result of a chronic pathological condition caused by the activation of hepatic stellate cells (HSCs), which induces the excessive deposition of extracellular matrix. Fibrogenesis is sustained by an exaggerated production of reactive oxidative species (ROS) by NADPH oxidases (NOXs), which are overactivated in hepatic inflammation. In this study, we investigated the antifibrotic properties of two phenolic compounds of natural origin, tyrosol (Tyr) and hydroxytyrosol (HTyr), known for their antioxidant and anti-inflammatory effects. We assessed Tyr and HTyr antifibrotic and antioxidant activity both in vitro, by a co-culture of LX2, HepG2 and THP1-derived Mϕ macrophages, set up to simulate the hepatic microenvironment, and in vivo, in a mouse model of liver fibrosis obtained by carbon tetrachloride treatment. We evaluated the mRNA and protein expression of profibrotic and oxidative markers (α-SMA, COL1A1, NOX1/4) by qPCR and/or immunocytochemistry or immunohistochemistry. The expression of selected miRNAs in mouse livers were measured by qPCR. Tyr and HTyr reduces fibrogenesis in vitro and in vivo, by downregulating all fibrotic markers. Notably, they also modulated oxidative stress by restoring the physiological levels of NOX1 and NOX4. In vivo, this effect was accompanied by a transcriptional regulation of inflammatory genes and of 2 miRNAs involved in the control of oxidative stress damage (miR-181-5p and miR-29b-3p). In conclusion, Tyr and HTyr exert antifibrotic and anti-inflammatory effects in preclinical in vitro and in vivo models of liver fibrosis, by modulating hepatic oxidative stress, representing promising candidates for further development.


Subject(s)
MicroRNAs , NADPH Oxidases , Mice , Animals , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , MicroRNAs/metabolism , Liver/metabolism , Hepatic Stellate Cells/metabolism , Oxidative Stress , Liver Cirrhosis/pathology , Antioxidants/metabolism , Anti-Inflammatory Agents/pharmacology
6.
Molecules ; 27(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36234738

ABSTRACT

Polyhydroxyalkanoates (PHAs) are a family of biopolyesters synthesized by various microorganisms. Due to their biocompatibility and biodegradation, PHAs have been proposed for biomedical applications, including tissue engineering scaffolds. Olive leaf extract (OLE) can be obtained from agri-food biowaste and is a source of polyphenols with remarkable antioxidant properties. This study aimed at incorporating OLE inside poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) fibers via electrospinning to obtain bioactive bio-based blends that are useful in wound healing. PHBHV/OLE electrospun fibers with a size of 1.29 ± 0.34 µm were obtained. Fourier transform infrared chemical analysis showed a uniform surface distribution of hydrophilic -OH groups, confirming the presence of OLE in the electrospun fibers. The main OLE phenols were released from the fibers within 6 days. The biodegradation of the scaffolds in phosphate buffered saline was investigated, demonstrating an adequate stability in the presence of metalloproteinase 9 (MMP-9), an enzyme produced in chronic wounds. The scaffolds were preliminarily tested in vitro with HFFF2 fibroblasts and HaCaT keratinocytes, suggesting adequate cytocompatibility. PHBHV/OLE fiber meshes hold promising features for wound healing, including the treatment of ulcers, due to the long period of durability in an inflamed tissue environment and adequate cytocompatibility.


Subject(s)
Polyhydroxyalkanoates , Antioxidants/pharmacology , Hydroxybutyrates/pharmacology , Matrix Metalloproteinase 9 , Olea , Pentanoic Acids , Phosphates , Plant Extracts , Polyesters/chemistry , Polyhydroxyalkanoates/chemistry , Polyphenols , Prospective Studies , Tissue Engineering , Tissue Scaffolds/chemistry , Wound Healing
7.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35890067

ABSTRACT

A growing body of evidence underlines the crucial role of GPR55 in physiological and pathological conditions. In fact, GPR55 has recently emerged as a therapeutic target for several diseases, including cancer and neurodegenerative and metabolic disorders. Several lines of evidence highlight GPR55's involvement in the regulation of microglia-mediated neuroinflammation, although the exact molecular mechanism has not been yet elucidated. Nevertheless, there are only a limited number of selective GPR55 ligands reported in the literature. In this work, we designed and synthesized a series of novel GPR55 ligands based on the 3-benzylquinolin-2(1H)-one scaffold, some of which showed excellent binding properties (with Ki values in the low nanomolar range) and almost complete selectivity over cannabinoid receptors. The full agonist profile of all the new derivatives was assessed using the p-ERK activation assay and a computational study was conducted to predict the key interactions with the binding site of the receptor. Our data outline a preliminary structure-activity relationship (SAR) for this class of molecules at GPR55. Some of our compounds are among the most potent GPR55 agonists developed to date and could be useful as tools to validate this receptor as a therapeutic target.

8.
Foods ; 11(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35564077

ABSTRACT

The health benefits of extra-virgin olive oil (EVOO) are strictly linked to the presence of phenolic compounds, which exhibit numerous nutraceutical properties. In EVOO, the most important class of phenolic compounds is represented by secoiridoids (oleacein and oleocanthal). EVOO is constantly subjected to degradation processes, including hydrolytic and oxidative reactions that influence its phenolic composition. In particular, the hydrolytic reactions determine the transformation of oleocanthal and oleacein into the corresponding phenyl-alcohols, tyrosol, and hydroxytyrosol. Furthermore, oleocanthal by oxidation processes can be converted to oleocanthalic acid. In this study, we evaluated the phenolic composition of three EVOO samples kept at different storage conditions for 15 months, focusing on the variation of oleocanthalic acid content. Specifically, the samples were stored at 4 °C in darkness and at 25 °C with light exposure. The results of our analyses highlighted that in EVOOs exposed to light and maintained at 25 °C, the degradation was more marked than in EVOO stored in dark and at 4 °C, due to the greater influence of external factors on storage conditions. Although chemical-physical characteristics of EVOOs are slightly different depending on provenience and treatment time, the results of this study reveal that storage conditions are fundamental to controlling phenol concentration.

9.
Front Nutr ; 8: 715183, 2021.
Article in English | MEDLINE | ID: mdl-34671630

ABSTRACT

Liver fibrosis, which is the outcome of wound-healing response to chronic liver damage, represents an unmet clinical need. This study evaluated the anti-fibrotic and anti-inflammatory effects of the polyphenol oleocanthal (OC) extracted from extra virgin olive oil (EVOO) by an in vitro/in vivo approach. The hepatic cell lines LX2 and HepG2 were used as in vitro models. The mRNA expression of pro-fibrogenic markers, namely alpha-smooth muscle actin (α-SMA), collagen type I alpha 1 chain (COL1A1), a panel of metalloproteinases (MMP1, MMP2, MMP3, MMP7, MMP9) and vascular endothelial growth factor A (VEGFA) as well as the pro-oxidant genes NADPH oxidases (NOXs) 1 and 4 were evaluated in TGF-ß activated LX2 cells by qRT-PCR. α-SMA and COL1A1 protein expression was assessed by immunofluorescence coupled to confocal microscopy. VEGFA release from LX2 was measured by ELISA. We also evaluated the amount of reactive oxygen species (ROS) produced by H2O2 activated- HepG2 cells. In vivo, OC was administered daily by oral gavage to Balb/C mice with CCl4-induced liver fibrosis. In this model, we measured the mRNA hepatic expression of the three pro-inflammatory interleukins (IL) IL6, IL17, IL23, chemokines such as C-C Motif Chemokine Ligand 2 (CCL2) and C-X-C Motif Chemokine Ligand 12 (CXCL12), and selected miRNAs (miR-181-5p, miR-221-3p, miR-29b-3p and miR-101b-3p) by qRT-PCR. We demonstrated that OC significantly downregulated the gene/protein expression of α-SMA, COL1A1, MMP2, MMP3, MMP7 and VEGF as well as the oxidative enzymes NOX1 and 4 in TGFß1-activated LX2 cells, and reduced the production of ROS by HepG2. In vivo OC, beside causing a significant reduction of fibrosis at histological assessment, counteracted the CCl4-induced upregulation of pro-fibrotic and inflammatory genes. Moreover, OC upregulated the anti-fibrotic miRNAs (miR-29b-3p and miR-101b-3p) reduced in fibrotic mice, while downregulated the pro-fibrotic miRNAs (miR-221-3p and miR-181-5p), which were dramatically upregulated in fibrotic mice. In conclusion, OC exerts a promising antifibrotic effect via a combined reduction of oxidative stress and inflammation involving putative miRNAs, which in turn reduces hepatic stellate cells activation and liver fibrosis.

10.
Antioxidants (Basel) ; 10(3)2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33801925

ABSTRACT

Neurodegenerative diseases are driven by several mechanisms such as inflammation, abnormal protein aggregation, excitotoxicity, mitochondrial dysfunction and oxidative stress. So far, no therapeutic strategies are available for neurodegenerative diseases and in recent years the research is focusing on bioactive molecules present in food. In particular, extra-virgin olive oil (EVOO) phenols have been associated to neuroprotection. In this study, we investigated the potential antioxidant and neuroprotective activity of two different EVOO extracts obtained from Quercetano cultivar trees grown in two different areas (plain and hill) of the Tuscany region (Italy). The different geographical origin of the orchards influenced phenol composition. Plain extract presented a higher content of phenyl ethyl alcohols, cinnammic acids, oleacein, oleocanthal and flavones; meanwhile, hill extract was richer in lignans. Hill extract was more effective in protecting differentiated SH-SY5Y cells from peroxide stress thanks to a marked upregulation of the antioxidant enzymes heme oxygenase 1, NADPH quinone oxidoreductase 1, thioredoxin Reductase 1 and glutathione reductase. Proteomic analysis revealed that hill extract plays a role in the regulation of proteins involved in neuronal plasticity and activation of neurotrophic factors such as BDNF. In conclusion, these data demonstrate that EVOOs can have important neuroprotective activities, but these effects are strictly related to their specific phenol composition.

11.
Curr Med Chem ; 28(33): 6730-6752, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-33761849

ABSTRACT

Several clinical studies have shown that exposure of skin to solar ultraviolet (UV) radiation causes adverse effects, such as inflammation, oxidative stress and DNA damage. As a result, different skin disorders can arise, among which are skin cancer, including non-melanoma skin cancer (NMSC) and melanoma (MM). Phenolic compounds are plant-derived secondary metabolites with a well-known antioxidant activity, able to counteract the negative effects of UV radiation. In this review, we discuss the effects of some selected phenols on NMSC and MM, demonstrating that they can be useful in the prevention and in the treatment of these types of tumors. Moreover, we report the mechanisms by which these phenols carry out their antitumor action. In vitro and in vivo studies have highlighted that many phenols are capable of inducing photoprotection, apoptosis and autophagy. They can also reduce DNA methylation, tumorigenesis, tumor incidence and proliferation. Moreover, we describe some examples of plant extracts, whose anticancer activity appears to be better than that of single phenols. A great concordance of results emerged, despite the differences in experimental methods. Therefore, the knowledge compiled here could provide the basis for conducting some well-organized clinical trials to validate the chemopreventive and the therapeutic potential of some phenolic compounds in patients with NMSC and MM.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/prevention & control , Phenols/therapeutic use , Skin , Skin Neoplasms/drug therapy , Skin Neoplasms/prevention & control , Ultraviolet Rays
12.
Eur J Med Chem ; 211: 113116, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33360803

ABSTRACT

We previously reported the 2-oxopyridine-3-carboxamide derivative EC21a as the first small synthetic CB2R positive allosteric modulator which displayed antinociceptive activity in vivo in an experimental mouse model of neuropathic pain. Herein, we extended the structure-activity relationships of EC21a through structural modifications regarding the p-fluoro benzyl moiety at position 1 and the amide group in position 3 of the central core. The characterization in vitro was assessed through radioligand binding experiments and functional assays (GTPγS, cAMP, ßarrestin2). Among the new compounds, the derivatives A1 (SV-10a) and A5 (SB-13a) characterized respectively by fluorine atom or by chlorine atom in ortho position of the benzylic group at position 1 and by a cycloheptane-carboxamide at position 3 of the central core, showed positive allosteric behavior on CB2R. They enhanced the efficacy of CP55,940 in [35S]GTPγS assay, and modulated CP55,940-dependent ßarrestin2 recruitment and cAMP inhibition. The obtained results extend our knowledge of the structural requirements for interaction with the allosteric site of CB2R.


Subject(s)
Allosteric Regulation/genetics , Receptor, Cannabinoid, CB2/metabolism , Humans , Molecular Structure , Structure-Activity Relationship
13.
Eur J Med Chem ; 208: 112858, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33002735

ABSTRACT

Multiple sclerosis is a chronic inflammatory demyelinating disorder of the central nervous system that eventually leads to progressive neurodegeneration and disability. Recent findings highlighted the emerging role of each target of the endocannabinoid system in controlling the symptoms and disease progression of multiple sclerosis. Therefore, multi-target modulators of the endocannabinoid system could provide a more effective pharmacological strategy as compared to the single target modulation. In this work, N-cycloheptyl-1,2-dihydro-5-bromo-1-(4-fluorobenzyl)-6-methyl-2-oxo-pyridine-3-carboxamide (B2) was identified as the most promising compound with dual agonism at cannabinoid receptors type-1 and cannabinoid receptors type-2 and good drug-like properties. In in vitro assays, B2 reduced glutamate release from rat synaptosomes through interaction with cannabinoid receptors type-1 and modulated the production of the pro- and anti-inflammatory cytokines (interleukins IL-1ß and IL-6 and interleukin IL-10 respectively) via cannabinoid receptors type-2 activation. Furthermore, B2 demonstrated antinociceptive effects in an animal model of neuropathic pain and efficacy in an experimental autoimmune encephalomyelitis model of multiple sclerosis.


Subject(s)
Analgesics/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Multiple Sclerosis/drug therapy , Pyridones/therapeutic use , Analgesics/chemical synthesis , Analgesics/metabolism , Animals , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/metabolism , Female , Ligands , Male , Mice, Inbred C57BL , Molecular Docking Simulation , Molecular Structure , Protein Binding , Pyridones/chemical synthesis , Pyridones/metabolism , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/metabolism , Structure-Activity Relationship
14.
Front Pharmacol ; 11: 574317, 2020.
Article in English | MEDLINE | ID: mdl-33071785

ABSTRACT

Extra-virgin olive oil (EVOO) polyphenols contribute to Mediterranean diet health-promoting properties. One of the most abundant secoiridoid present in EVOO, Oleacein (OA), demonstrated anticancer activity against several tumors. Nevertheless, its role against melanoma has not still investigated. This study aimed at determining in vitro the antimelanoma activity of OA and the relative mechanism of action. OA induced cell growth inhibition in 501Mel melanoma cells with an IC50 in the low micromolar range of concentrations. Moreover, an OA concentration approximating the IC50 induced G1/S phase arrest, DNA fragmentation, and downregulation of genes encoding antiapoptotic (BCL2 and MCL1) and proproliferative (c-KIT, K-RAS, PIK3R3, mTOR) proteins, while increased transcription levels of the proapoptotic protein BAX. Concordantly, OA increased the levels of miR-193a-3p (targeting MCL1, c-KIT and K-RAS), miR-193a-5p (targeting PIK3R3 and mTOR), miR-34a-5p (targeting BCL2 and c-KIT) and miR-16-5p (miR-16-5p targeting BCL2, K-RAS and mTOR), while decreased miR-214-3p (targeting BAX). These modulatory effects might contribute to the inhibition of 501Mel melanoma cell growth observed after treatment with an olive leaves-derived formulation rich in OA, with potential application against in situ cutaneous melanoma. Altogether, these results demonstrate the ability of OA to contrast the proliferation of cutaneous melanoma cells through the transcriptional modulation of relevant genes and microRNAs, confirming the anticancer potential of EVOO and suggesting OA as a chemopreventive agent for cancer disease therapy.

15.
Eur J Med Chem ; 203: 112606, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32682199

ABSTRACT

Allosteric modulation of the CB1Rs could represent an alternative strategy for the treatment of diseases in which these receptors are involved, without the undesirable effects associated with their orthosteric stimulation. PSNCBAM-1 is a reference diaryl urea derivative that positively affects the binding affinity of orthosteric ligands (PAM) and negatively affects the functional activity of orthosteric ligands (NAM) at CB1Rs. In this work we reported the design, synthesis and biological evaluation of three different series of compounds, derived from structural modifications of PSNCBAM-1 and its analogs reported in the recent literature. Almost all the new compounds increased the percentage of binding affinity of CP55940 at CB1Rs, showing a PAM profile. When tested alone in the [35S]GTPγS functional assay, only a few derivatives lacked detectable activity, so were tested in the same functional assay in the presence of CP55940. Among these, compounds 11 and 18 proved to be functional NAMs at CB1Rs, dampening the orthosteric agonist-induced receptor functionality by approximately 30%. The structural features presented in this work provide new CB1R-allosteric modulators (with a profile similar to the reference compound PSNCBAM-1) and an extension of the structure-activity relationships for this type of molecule at CB1Rs.


Subject(s)
Phenylurea Compounds/chemistry , Phenylurea Compounds/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB1/metabolism , Allosteric Regulation/drug effects , Dose-Response Relationship, Drug , Humans , Ligands , Receptor, Cannabinoid, CB1/agonists
16.
Bioorg Chem ; 94: 103353, 2020 01.
Article in English | MEDLINE | ID: mdl-31668465

ABSTRACT

Several preclinical evidence indicate that the modulation of the endocannabinoid system (ECS) represents a promising therapeutic approach for different diseases. However, only few modulators of this system have reached so far an advanced stage of clinical development, mainly due to limited efficacy and CB1 receptor-dependent side effects. Those limitations might be overcome by multi-target compounds that exert pro-cannabinoid activities through the modulation of two or more targets in the ECS. This approach can offer a safer and more effective pharmacological strategy as compared to the modulation of a single target. In this work, we report the synthesis and biological characterization of new 6-aryl-1,2-dihydro-2-oxo-pyridine-3-carboxamide derivatives. Our results identified several compounds exhibiting interesting multi-target profiles within the ECS. In particular, compound B1 showed moderate-to-high affinity for cannabinoid receptors (Ki CB1R = 304 nM, partial agonist, Ki CB2R = 3.1 nM, inverse agonist) and a potent inhibition of AEA uptake (IC50 = 62 nM) with moderate inhibition of FAAH (IC50 = 2.9 µM). The corresponding 2-alkoxypyridine analogue B14 exhibited significant inhibitor activity on both FAAH (IC50 = 69 nM) and AEA uptake (IC50 = 76 nM) without significantly binding to both cannabinoid receptor subtypes. Molecular docking analysis was carried out on the three-dimensional structures of CB1R and CB2R and of FAAH to rationalize the structure-activity relationships of this series of compounds.


Subject(s)
Endocannabinoids/metabolism , Pyridines/chemistry , Animals , Humans , Molecular Docking Simulation , Receptors, Cannabinoid/metabolism , Structure-Activity Relationship
17.
Int J Mol Sci ; 20(23)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775339

ABSTRACT

Olive leaf extract (OLE) can be obtained as biowaste and is extensively used a food supplement and an over-the-counter drug for its beneficial effects. New studies have investigated OLE concerning the role of oxidative stress in the pathogenesis of vascular disease. This in vitro study aims to evaluate if OLE extracted from the Tuscan Olea europaea protects endothelial cells against oxidative stress generated by reactive oxygen species (ROS). METHODS: OLE total polyphenols (TPs) were characterized by the Folin-Ciocalteu method. Endothelial cells were grown in conventional cultures (i.e., two-dimensional, 2D) and on a biomaterial scaffold (i.e., three-dimensional, 3D) fabricated via electrospinning. Cell viability and ROS measurement after H2O2 insults were performed. RESULTS: OLE TP content was 23.29 mg GAE/g, and oleuropein was the principal compound. The dose-dependent viability curve highlighted the absence of significant cytotoxic effects at OLE concentrations below 250 µg/mL TPs. By using OLE preconditioning at 100 µg/mL, cell viability decrease was observed, being in 3D lower than in the 2D model. OLE was protective against ROS in both models. CONCLUSIONS: OLE represents a high-value antioxidant source obtained by biowaste that is interesting for biomedical products. Using a 3D scaffold could be the best predictive model to mimic the physiological conditions of vascular tissue reaction.


Subject(s)
Antioxidants/pharmacology , Endothelium, Vascular/drug effects , Olea/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Leaves/chemistry , Protective Agents/pharmacology , Cell Survival , Endothelium, Vascular/cytology , Humans , Reactive Oxygen Species/metabolism
18.
Nutrients ; 11(12)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766503

ABSTRACT

Inflammation of the adipose tissue plays an important role in the development of several chronic diseases associated with obesity. Polyphenols of extra virgin olive oil (EVOO), such as the secoiridoids oleocanthal (OC) and oleacein (OA), have many nutraceutical proprieties. However, their roles in obesity-associated adipocyte inflammation, the NF-κB pathway and related sub-networks have not been fully elucidated. Here, we investigated impact of OC and OA on the activation of NF-κB and the expression of molecules associated with inflammatory and dysmetabolic responses. To this aim, fully differentiated Simpson-Golabi-Behmel syndrome (SGBS) adipocytes were pre-treated with OC or OA before stimulation with TNF-α. EVOO polyphenols significantly reduced the expression of genes implicated in adipocyte inflammation (IL-1ß, COX-2), angiogenesis (VEGF/KDR, MMP-2), oxidative stress (NADPH oxidase), antioxidant enzymes (SOD and GPX), leukocytes chemotaxis and infiltration (MCP-1, CXCL-10, MCS-F), and improved the expression of the anti-inflammatory/metabolic effector PPARγ. Accordingly, miR-155-5p, miR-34a-5p and let-7c-5p, tightly connected with the NF-κB pathway, were deregulated by TNF-α in both cells and exosomes. The miRNA modulation and NF-κB activation by TNF-α was significantly counteracted by EVOO polyphenols. Computational studies suggested a potential direct interaction between OC and NF-κB at the basis of its activity. This study demonstrates that OC and OA counteract adipocyte inflammation attenuating NF-κB activation. Therefore, these compounds could be novel dietary tools for the prevention of inflammatory diseases associated with obesity.


Subject(s)
Adipocytes/drug effects , Aldehydes/pharmacology , Cyclopentane Monoterpenes/pharmacology , Inflammation/metabolism , NF-kappa B/metabolism , Phenols/pharmacology , Adipocytes/metabolism , Cells, Cultured , Exosomes , Gene Expression Regulation/drug effects , Humans , Inflammation/genetics , MicroRNAs/analysis , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction/drug effects
19.
Future Med Chem ; 11(15): 2019-2037, 2019 08.
Article in English | MEDLINE | ID: mdl-31517528

ABSTRACT

Allosteric modulators of cannabinoid receptors hold great therapeutic potential, as they do not possess intrinsic efficacy, but instead enhance or diminish the receptor's response of orthosteric ligands allowing for the tempering of cannabinoid receptor signaling without the desensitization, tolerance and dependence. Allosteric modulators of cannabinoid receptors have numerous advantages over the orthosteric ligands such as higher receptor type selectivity, probe dependence and biased signaling, so they have a great potential to separate the therapeutic benefits from side effects own of orthosteric ligands. This review aims to give an overview of the CB1 and CB2 receptor allosteric modulators highlighting the structure-activity relationship and pharmacological profile of each classes, and their future promise.


Subject(s)
Drug Design , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB2/chemistry , Allosteric Regulation/drug effects , Humans , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacology , Piperidines/chemistry , Piperidines/metabolism , Piperidines/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/metabolism , Urea/pharmacology
20.
Molecules ; 24(9)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075867

ABSTRACT

In this work, hybrid compounds 1-4 obtained by conjugation of the non-steroidal anti-inflammatory drug diclofenac, with natural molecules endowed with antioxidant and antiproliferative activity were prepared. The antiproliferative activity of these hybrids was evaluated on immortalized human keratinocyte (HaCaT) cells stimulated with epidermal growth factor (EGF), an actinic keratosis (AK) model, and on human squamous cell carcinoma (SCC) cells (A431). Hybrid 1 presented the best activity in both cell models. Self-assembling surfactant nanomicelles have been chosen as the carrier to drive the hybrid 1 into the skin; the in vitro permeation through and penetration into pig ear skin have been evaluated. Among the nanostructured formulations tested, Nano3Hybrid20 showed a higher tendency of the hybrid 1 to be retained in the skin rather than permeating it, with a desirable topical and non-systemic action. On these bases, hybrid 1 may represent an attractive lead scaffold for the development of new treatments for AK and SCC.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Diclofenac/therapeutic use , Keratosis, Actinic/drug therapy , Skin Neoplasms/drug therapy , Animals , Carcinoma, Squamous Cell/pathology , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Diclofenac/chemical synthesis , Diclofenac/chemistry , Diclofenac/pharmacology , Humans , Inhibitory Concentration 50 , Keratosis, Actinic/pathology , Micelles , Nanoparticles/chemistry , Particle Size , Skin Neoplasms/pathology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...