Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38578235

ABSTRACT

Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of the correct pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). Here, we treated mammalian cells with the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyperactivation of Rab7 (herein referring to Rab7a), and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR; also known as IGF2R) recycling on pH-neutralized LEs. pH neutralization (NH4Cl) and expression of Rab7 hyperactive mutants alone can both phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit (encoded by ATP6V1G1) of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds and in disease states.


Subject(s)
Adaptor Proteins, Signal Transducing , Endosomes , Vacuolar Proton-Translocating ATPases , rab7 GTP-Binding Proteins , Animals , Humans , Endosomes/metabolism , HeLa Cells , Hydrogen-Ion Concentration , Lysosomes/metabolism , Protein Transport , Receptor, IGF Type 2/metabolism , Receptor, IGF Type 2/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Vacuolar Proton-Translocating ATPases/genetics
2.
J Biol Chem ; 299(7): 104916, 2023 07.
Article in English | MEDLINE | ID: mdl-37315786

ABSTRACT

In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. To test if the dynein adapter RAB-interacting lysosomal protein (RILP) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents previously validated in non-neuronal cells. Striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of staining. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. It would be interesting to identify the actual target for this neuronal Golgi phenotype. Cell type-specific off-target phenotypes therefore likely occur in neurons, necessitating revalidation of reagents that were previously validated in other cell types.


Subject(s)
Adaptor Proteins, Signal Transducing , Golgi Apparatus , Neurons , RNA, Small Interfering , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Dyneins/metabolism , Endosomes/metabolism , HeLa Cells , Lysosomes/metabolism , Neurons/cytology , Neurons/metabolism , Phenotype , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Animals , Golgi Apparatus/metabolism , rab7 GTP-Binding Proteins/metabolism , Nuclear Proteins/metabolism , Biomarkers/metabolism , Dendrites/metabolism , Reproducibility of Results
3.
Bio Protoc ; 13(10): e4675, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37251096

ABSTRACT

Live imaging is commonly used to study dynamic processes in cells. Many labs carrying out live imaging in neurons use kymographs as a tool. Kymographs display time-dependent microscope data (time-lapsed images) in two-dimensional representations showing position vs. time. Extraction of quantitative data from kymographs, often done manually, is time-consuming and not standardized across labs. We describe here our recent methodology for quantitatively analyzing single color kymographs. We discuss the challenges and solutions of reliably extracting quantifiable data from single-channel kymographs. When acquiring in two fluorescent channels, the challenge becomes analyzing two objects that may co-traffic together. One must carefully examine the kymographs from both channels and decide which tracks are the same or try to identify the coincident tracks from an overlay of the two channels. This process is laborious and time consuming. The difficulty in finding an available tool for such analysis has led us to create a program to do so, called KymoMerge. KymoMerge semi-automates the process of identifying co-located tracks in multi-channel kymographs and produces a co-localized output kymograph that can be analyzed further. We describe our analysis, caveats, and challenges of two-color imaging using KymoMerge.

4.
bioRxiv ; 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36945482

ABSTRACT

In neurons, degradation of dendritic cargos requires RAB7 and dynein-mediated retrograde transport to somatic lysosomes. In order to test if the dynein adaptor RILP (RAB-interacting lysosomal protein) mediated the recruitment of dynein to late endosomes for retrograde transport in dendrites, we obtained several knockdown reagents which had been previously validated in non-neuronal cells. We found that striking endosomal phenotypes elicited by one shRILP plasmid were not reproduced by another one. Furthermore, we discovered a profound depletion of Golgi/TGN markers for both shRILP plasmids. This Golgi disruption was only observed in neurons and could not be rescued by re-expression of RILP. This Golgi phenotype was also not found in neurons treated with siRILP or gRILP/Cas9. Lastly, we tested if a different RAB protein that interacts with RILP, namely the Golgi-associated RAB34, might be responsible for the loss of Golgi markers. Expression of a dominant-negative RAB34 did indeed cause changes in Golgi staining in a small subset of neurons but manifested as fragmentation rather than loss of markers. Unlike in non-neuronal cells, interference with RAB34 did not cause dispersal of lysosomes in neurons. Based on multiple lines of experimentation, we conclude that the neuronal Golgi phenotype observed with shRILP is likely off-target in this cell type specifically. Any observed disruptions of endosomal trafficking caused by shRILP in neurons might thus be downstream of Golgi disruption. Different approaches will be needed to test if RILP is required for late endosomal transport in dendrites. Cell type-specific off-target phenotypes therefore likely occur in neurons, making it prudent to re-validate reagents that were previously validated in other cell types.

5.
Genes Brain Behav ; 21(6): e12816, 2022 07.
Article in English | MEDLINE | ID: mdl-35577358

ABSTRACT

The Neuron-specific gene family (NSG1-3) consists of small endolysosomal proteins that are critical for trafficking multiple receptors and signaling molecules in neurons. NSG1 has been shown to play a critical role in AMPAR recycling from endosomes to plasma membrane during synaptic plasticity. However, to date nothing is known about whether NSG1 is required for normal behavior at an organismal level. Here we performed a battery of behavioral tests to determine whether loss of NSG1 would affect motor, cognitive, and/or affective behaviors, as well as circadian-related activity. Consistent with unique cerebellar expression of NSG1 among family members, we found that NSG1 was obligatory for motor coordination but not for gross motor function or learning. NSG1 knockout (KO) also altered performance across other behavioral modalities including anxiety-related and diurnal activity paradigms. Surprisingly, NSG1 KO did not cause significant impairments across all tasks within a given modality, but had specific effects within each modality. For instance, we found increases in anxiety-related behaviors in tasks with multiple stressors (e.g., elevation and exposure), but not those with a single main stressor (e.g., exposure). Interestingly, NSG1 KO animals displayed a significant increase in locomotor activity during subjective daytime, suggesting a possible impact on diurnal activity rhythms or vigilance. Surprisingly, loss of NSG1 had no effect on hippocampal-dependent learning despite previous studies showing deficits in CA1 long-term potentiation. Together, these findings do not support a role of NSG1 in hippocampal-dependent learning, but support a role in mediating proper neuronal function across amygdalar and cerebellar circuits.


Subject(s)
Hippocampus , Neurons , Animals , Anxiety/genetics , Endosomes/metabolism , Hippocampus/metabolism , Male , Mice , Mice, Knockout , Neuronal Plasticity/physiology , Neurons/metabolism
6.
J Neurosci ; 42(22): 4415-4434, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35474277

ABSTRACT

In all cell types, endocytosed cargo is transported along a set of endosomal compartments, which are linked maturationally from early endosomes (EEs) via late endosomes (LEs) to lysosomes. Lysosomes are critical for degradation of proteins that enter through endocytic as well as autophagic pathways. Rab7 is the master regulator of early-to-late endosome maturation, motility, and fusion with lysosomes. We previously showed that most degradative lysosomes are localized in the soma and in the first 25 µm of the dendrite and that bulk degradation of dendritic membrane proteins occurs in/near the soma. Dendritic late endosomes therefore move retrogradely in a Rab7-dependent manner for fusion with somatic lysosomes. We now used cultured E18 rat hippocampal neurons of both sexes to determine which microtubule motor is responsible for degradative flux of late endosomes. Based on multiple approaches (inhibiting dynein/dynactin itself or inhibiting dynein recruitment to endosomes by expressing the C-terminus of the Rab7 effector, RILP), we now demonstrate that net retrograde flux of late endosomes in dendrites is supported by dynein. Inhibition of dynein also delays maturation of somatic endosomes, as evidenced by excessive accumulation of Rab7. In addition, degradation of dendritic cargos is inhibited. Our results also suggest that GDP-GTP cycling of Rab7 appears necessary not only for endosomal maturation but also for fusion with lysosomes subsequent to arrival in the soma. In conclusion, Rab7-dependent dynein/dynactin recruitment to dendritic endosomes plays multifaceted roles in dendritic endosome maturation as well as retrograde transport of late endosomes to sustain normal degradative flux.SIGNIFICANCE STATEMENT Lysosomes are critical for degradation of membrane and extracellular proteins that enter through endocytosis. Lysosomes are also the endpoint of autophagy and thus responsible for protein and organelle homeostasis. Endosomal-lysosomal dysfunction is linked to neurodegeneration and aging. We identify roles in dendrites for two proteins with links to human diseases, Rab7 and dynein. Our previous work identified a process that requires directional retrograde transport in dendrites, namely, efficient degradation of short-lived membrane proteins. Based on multiple approaches, we demonstrate that Rab7-dependent recruitment of dynein motors supports net retrograde transport to lysosomes and is needed for endosome maturation. Our data also suggest that GDP-GTP cycling of Rab7 is required for fusion with lysosomes and degradation, subsequent to arrival in the soma.


Subject(s)
Dendrites , Dyneins , rab7 GTP-Binding Proteins , Adaptor Proteins, Signal Transducing/metabolism , Animals , Dendrites/metabolism , Dyneins/metabolism , Endosomes/metabolism , Female , Guanosine Triphosphate/metabolism , Hippocampus/cytology , Hippocampus/metabolism , Lysosomes/metabolism , Male , Membrane Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Protein Transport/physiology , Rats , rab7 GTP-Binding Proteins/metabolism
7.
Vaccine ; 40(4): 640-649, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34969541

ABSTRACT

Bangladesh remains cholera endemic with biannual seasonal peaks causing epidemics. At least 300,000 severe cases and over 4,500 deaths occur each year. The available oral cholera vaccineshave not yet been adopted for cholera control in Bangladesh due to insufficient number of doses available for endemic control. With a public private partnership, icddr,b initiated a collaboration between vaccine manufacturers in Bangladesh and abroad. A locally manufactured Oral Cholera Vaccine (OCV) named Cholvax became available for testing in Bangladesh. We evaluated the safety and immunogenicity of this locally produced Cholvax (Incepta Vaccine Ltd) inexpensive OCV comparatively to Shanchol (Shantha Biotechnics-Sanofi Pasteur) which is licensed in several countries. We conducted a randomized non-inferiority clinical trial of bivalent, killed oral whole-cell cholera vaccine Cholvax vs. Shanchol in the cholera-endemic area of Mirpur, Dhaka, among three different age cohorts (1-5, 6-17 and 18-45 years) between April 2016 and April 2017. Two vaccine doses were given at 14 days apart to 2,052 healthy participants. No vaccine-related serious adverse events were reported. There were no significant differences in the frequency of solicited (7.31% vs. 6.73%) and unsolicited (1.46% vs. 1.07%) adverse events reported between the Cholvax and Shanchol groups. Vibriocidal antibody responses among the overall population for O1 Ogawa (81% vs. 77%) and O1 Inaba (83% vs. 84%) serotypes showed that Cholvax was non-inferior to Shanchol, with the non-inferiority margin of -10%. For O1 Inaba, GMT was 462.60 (Test group), 450.84 (Comparator group) with GMR 1.02(95% CI: 0.92, 1.13). For O1 Ogawa, GMT was 419.64 (Test group), 387.22 (Comparator group) with GMR 1.12 (95% CI: 1.02, 1.23). Cholvax was safe and non-inferior to Shanchol in terms of immunogenicity in the different age groups. These results support public use of Cholvax to contribute for reduction of the cholera burden in Bangladesh. ClinicalTrials.gov number: NCT027425581.


Subject(s)
Cholera Vaccines , Cholera , Vibrio cholerae O1 , Administration, Oral , Antibodies, Bacterial , Bangladesh/epidemiology , Cholera/epidemiology , Cholera/prevention & control , Humans , Infant , Vaccines, Inactivated/adverse effects
8.
Heliyon ; 7(6): e07314, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34195422

ABSTRACT

Achieving durable protective immunity following vaccination is dependent on many factors, including vaccine composition and antigen dose, and it has been investigated for various types of vaccines. Aim of the present study was to investigate the overall immune response elicited by two different booster doses in CD-1 mice, by exploiting the largely used 13-valent pneumococcal conjugate vaccine Prevnar 13® (PCV13). Immunization was performed by two primary doses of PCV13 two weeks apart, and a full or fractional (1/5) booster dose on week 10. Serotype-specific antibody titer, avidity, and opsonophagocytic activity were evaluated one week later, and compared to cell-mediated immunity (CMI) responses determined as the frequency of cytokines producing splenocytes by in vitro recall with the antigens (carrier protein and polysaccharides). Data showed that regardless of the booster dose, a comparable humoral response was produced, characterized by similar amounts of serotype-specific antibodies, with analog avidity and opsonophagocytic properties. On the other hand, when CMI was evaluated, the presence of CRM197-specific IL-5 and IL-2 producing cells was evident in splenocytes from mice immunized with the full dose, while in those immunized with the fractional booster dose, IFN-γ producing cells responsive to both protein and polysaccharide antigens were significantly increased, whereas the number of IL-5 and IL-2 positive cells remained unaffected. Overall the present findings show that PCV13 humoral response in mice is associated to a Th2 predominant response at the full booster dose, while the fractional one favors a mixed Th1/Th2 response, suggesting an important role of CMI besides measurement of functional protective antibodies, as an additional and important key information in vaccine development.

9.
J Biol Chem ; 293(49): 18890-18902, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30291144

ABSTRACT

Doublecortin (DCX) is a protein needed for cortical development, and DCX mutations cause cortical malformations in humans. The microtubule-binding activity of DCX is well-described and is important for its function, such as supporting neuronal migration and dendrite growth during development. Previous work showed that microtubule binding is not sufficient for DCX-mediated promotion of dendrite growth and that domains in DCX's C terminus are also required. The more C-terminal regions of DCX bind several other proteins, including the adhesion receptor neurofascin and clathrin adaptors. We recently identified a role for DCX in endocytosis of neurofascin. The disease-associated DCX-G253D mutant protein is known to be deficient in binding neurofascin, and we now asked if disruption of neurofascin endocytosis underlies the DCX-G253D-associated pathology. We first demonstrated that DCX functions in endocytosis as a complex with both the clathrin adaptor AP-2 and neurofascin: disrupting either clathrin adaptor binding (DCX-ALPA) or neurofascin binding (DCX-G253D) decreased neurofascin endocytosis in primary neurons. We then investigated a known function for DCX, namely, increasing dendrite growth in cultured neurons. Surprisingly, we found that the DCX-ALPA and DCX-G253D mutants yield distinct dendrite phenotypes. Unlike DCX-ALPA, DCX-G253D caused a dominant-negative dendrite growth phenotype. The endocytosis defect of DCX-G253D thus was separable from its detrimental effects on dendrite growth. We recently identified Dcx-R59H as a dominant allele and can now classify Dcx-G253D as a second Dcx allele that acts dominantly to cause pathology, but does so via a different mechanism.


Subject(s)
Dendrites/metabolism , Microtubule-Associated Proteins/genetics , Neurons/cytology , Neuropeptides/genetics , Adaptor Protein Complex 2/metabolism , Animals , Binding Sites , COS Cells , Cell Adhesion Molecules/metabolism , Chlorocebus aethiops , Dendrites/genetics , Doublecortin Domain Proteins , Doublecortin Protein , Endocytosis/genetics , HEK293 Cells , Humans , Mice , Microtubule-Associated Proteins/metabolism , Mutation , Nerve Growth Factors/metabolism , Neurons/metabolism , Neuropeptides/metabolism , Rats
10.
Vaccine ; 36(45): 6606-6614, 2018 10 29.
Article in English | MEDLINE | ID: mdl-30314912

ABSTRACT

Cholera, a diarrheal disease primarily affecting vulnerable populations in developing countries, is estimated to cause disease in more than 2.5 million people and kill almost 100,000 annually. An oral cholera vaccine (OCV) has been available globally since 2001; the demand for this vaccine from affected countries has however been very low, due to various factors including vaccine price and mode of administration. The low demand for the vaccine and limited commercial incentives to invest in research and development of vaccines for developing country markets has kept the global supply of OCVs down. Since 1999, the International Vaccine Institute has been committed to make safe, effective and affordable OCVs accessible. Through a variety of partnerships with collaborators in Sweden, Vietnam, India and South Korea, and with public and private funding, IVI facilitated development and production of two affordable and WHO-prequalified OCVs and together with other stakeholders accelerated the introduction of these vaccines for the global public-sector market.


Subject(s)
Cholera Vaccines/supply & distribution , Cholera/immunology , Cholera/prevention & control , Public-Private Sector Partnerships , Administration, Oral , Cholera Vaccines/administration & dosage , Cholera Vaccines/therapeutic use , India , Republic of Korea , Sweden , Vietnam
11.
Vaccine ; 36(29): 4317-4324, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29895500

ABSTRACT

BACKGROUND: To contribute to the global demand for oral cholera vaccine (OCV), the production of Euvichol® was scaled up with elimination of thimerosal. To demonstrate the equivalence of the variations, a study was carried out in the Philippines. METHODS: Healthy male and female adults and children in Manila were randomized to receive two doses of Euvichol® two weeks apart from either the 100L (Comparator) or the 600L (Test) variation. Primary and secondary immunogenicity endpoints were respectively geometric mean titer (GMT) of vibriocidal antibodies (two weeks post second dose) and seroconversion rate (two weeks after each dose) against O1 Inaba, Ogawa, and O139 serogroups. The GMT of vibriocidal antibodies against O1 Inaba, Ogawa, and O139 two weeks post first dose was also measured. To show the equivalence of two variations of Euvichol®, the ratio of GMT and the difference of seroconversion rate between Test and Comparator vaccines were tested with equivalence margin of [0.5, 2.0] for GMT ratio and of 15% for seroconversion rate, respectively. Safety assessment included solicited reactogenicity within 6 days after each dose and unsolicited and serious adverse events. RESULTS: A total of 442 participants were enrolled. For the overall population, equivalence between Test and Comparator was demonstrated for vibriocidal antibody response against O1 Inaba and Ogawa serotypes and O139 serogroup in both modified intention-to-treat (mITT) and per protocol analysis, since the 95% confidence intervals (CI) of GMT to any serotypes were within the lower and upper boundary [0.5, 2.0]. Seroconversion rates after two doses also showed equivalence for O1 Inaba, Ogawa, and O139. The vaccine was safe and well tolerated, similarly between the two groups. CONCLUSION: The study results support the equivalence of the 600L Euvichol® to the 100L formulation in healthy children and adults. The 600L Euvichol® is safe and immunogenic in adults and children. ClinicalTrials.gov registration number: NCT02502331.


Subject(s)
Cholera Vaccines/immunology , Adolescent , Adult , Antibodies, Bacterial/blood , Child , Child, Preschool , Cholera Vaccines/administration & dosage , Cholera Vaccines/adverse effects , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Female , Healthy Volunteers , Humans , Immunization Schedule , Infant , Male , Philippines , Seroconversion , Single-Blind Method , Surveys and Questionnaires , Therapeutic Equivalency , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/immunology , Young Adult
12.
J Cell Biol ; 217(9): 3141-3159, 2018 09 03.
Article in English | MEDLINE | ID: mdl-29907658

ABSTRACT

Neurons are large and long lived, creating high needs for regulating protein turnover. Disturbances in proteostasis lead to aggregates and cellular stress. We characterized the behavior of the short-lived dendritic membrane proteins Nsg1 and Nsg2 to determine whether these proteins are degraded locally in dendrites or centrally in the soma. We discovered a spatial heterogeneity of endolysosomal compartments in dendrites. Early EEA1-positive and late Rab7-positive endosomes are found throughout dendrites, whereas the density of degradative LAMP1- and cathepsin (Cat) B/D-positive lysosomes decreases steeply past the proximal segment. Unlike in fibroblasts, we found that the majority of dendritic Rab7 late endosomes (LEs) do not contain LAMP1 and that a large proportion of LAMP1 compartments do not contain CatB/D. Second, Rab7 activity is required to mobilize distal predegradative LEs for transport to the soma and terminal degradation. We conclude that the majority of dendritic LAMP1 endosomes are not degradative lysosomes and that terminal degradation of dendritic cargos such as Nsg1, Nsg2, and DNER requires Rab7-dependent transport in LEs to somatic lysosomes.


Subject(s)
Carrier Proteins/metabolism , Dendrites/metabolism , Lysosomes/metabolism , Membrane Transport Proteins/metabolism , Nerve Tissue Proteins/metabolism , Proteolysis , rab GTP-Binding Proteins/metabolism , Animals , Cathepsin B/metabolism , Cathepsin D/metabolism , Cells, Cultured , Endosomes/metabolism , Lysosomal Membrane Proteins/metabolism , Mice , Protein Transport/physiology , Proteostasis/physiology , Rats , Receptors, Cell Surface/metabolism , Vesicular Transport Proteins/metabolism , rab7 GTP-Binding Proteins
13.
Int J Infect Dis ; 66: 90-95, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29174695

ABSTRACT

BACKGROUND: Cholera is known to be transmitted from person to person, and inactivated oral cholera vaccines (OCVs) have been shown to confer herd protection via interruption of this transmission. However, the geographic dimensions of chains of person-to-person transmission of cholera are uncertain. The ability of OCVs to confer herd protection was used to define these dimensions in two cholera-endemic settings, one in rural Bangladesh and the other in urban India. METHODS: Two large randomized, placebo-controlled trials of inactivated OCVs, one in rural Matlab, Bangladesh and the other in urban Kolkata, India, were reanalyzed. Vaccine herd protection was evaluated by relating the risk of cholera in placebo recipients to vaccine coverage of surrounding residents residing within concentric rings. In Matlab, concentric rings in 100-m increments up to 700m were evaluated; in Kolkata, 50-m increments up to 350m were evaluated. RESULTS: One hundred and eight cholera cases among 24667 placebo recipients were detected during 1year of post-vaccination follow-up at Matlab; 128 cholera cases among 34968 placebo recipients were detected during 3 years of follow-up in Kolkata. Consistent inverse relationships were observed between vaccine coverage of the ring and the risk of cholera in the central placebo recipient for rings with radii up to 500m in Matlab and up to 150m in Kolkata. CONCLUSIONS: These results suggest that the dimensions of chains of person-to-person transmission in endemic settings can be quite large and may differ substantially from setting to setting. Using OCVs as 'probes' to define these dimensions can inform geographical targeting strategies for the deployment of these vaccines in endemic settings.


Subject(s)
Cholera Vaccines/administration & dosage , Cholera/transmission , Administration, Oral , Adolescent , Adult , Bangladesh/epidemiology , Child , Child, Preschool , Cholera/epidemiology , Cholera/prevention & control , Female , Geography , Humans , India/epidemiology , Infant , Male , Rural Population , Vaccines, Inactivated/immunology , Young Adult
14.
Sci Rep ; 7(1): 10481, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28874679

ABSTRACT

Membrane traffic critically regulates most aspects of neuronal function. Neurons express many neuronal-specific proteins that regulate membrane traffic, including the poorly understood small transmembrane proteins neural-specific gene 1 and 2 (Nsg1/NEEP21 and Nsg2/P19). Nsg1 has been implicated in regulating endosomal recycling and sorting of several important neuronal receptors. Nsg2 is largely unstudied. At steady-state, Nsg1 and Nsg2 only partially co-localize with known endosomal compartments, and it was suggested that they mark a neuronal-specific endosome. Since Nsg1 localizes to and functions in the dendritic endosome, we set out to discover how Nsg1 and Nsg2 localization to endosomes is regulated in primary rat hippocampal neurons, using quadruple immunolocalization against endogenous proteins, live imaging of dendritic endosomes, and interference approaches against the endosomal regulators Rab5 and Rab7. In contrast to previous conclusions, we now show that Nsg1 and Nsg2 are not resident endosomal proteins, but traffic rapidly from the cell surface to lysosomes and have a half-life of less than two hours. Their partial co-localization with canonical endosomal markers thus reflects their rapid flux towards degradation rather than specific targeting to a singular compartment. These findings will require rethinking of how this class of endosomal proteins regulates trafficking of much longer-lived receptors.


Subject(s)
Carrier Proteins/metabolism , Dendrites/metabolism , Endosomes/metabolism , Membrane Transport Proteins/metabolism , Nerve Tissue Proteins/metabolism , Animals , Carrier Proteins/genetics , Cells, Cultured , Hippocampus/cytology , Hippocampus/metabolism , Membrane Transport Proteins/genetics , Mice , Nerve Tissue Proteins/genetics , Protein Transport , Rats , Transfection
15.
Lancet Infect Dis ; 17(10): 1080-1088, 2017 10.
Article in English | MEDLINE | ID: mdl-28729167

ABSTRACT

BACKGROUND: Killed whole-cell oral cholera vaccines (kOCVs) are becoming a standard cholera control and prevention tool. However, vaccine efficacy and direct effectiveness estimates have varied, with differences in study design, location, follow-up duration, and vaccine composition posing challenges for public health decision making. We did a systematic review and meta-analysis to generate average estimates of kOCV efficacy and direct effectiveness from the available literature. METHODS: For this systematic review and meta-analysis, we searched PubMed, Embase, Scopus, and the Cochrane Review Library on July 9, 2016, and ISI Web of Science on July 11, 2016, for randomised controlled trials and observational studies that reported estimates of direct protection against medically attended confirmed cholera conferred by kOCVs. We included studies published on any date in English, Spanish, French, or Chinese. We extracted from the published reports the primary efficacy and effectiveness estimates from each study and also estimates according to number of vaccine doses, duration, and age group. The main study outcome was average efficacy and direct effectiveness of two kOCV doses, which we estimated with random-effect models. This study is registered with PROSPERO, number CRD42016048232. FINDINGS: Seven trials (with 695 patients with cholera) and six observational studies (217 patients with cholera) met the inclusion criteria, with an average two-dose efficacy of 58% (95% CI 42-69, I2=58%) and effectiveness of 76% (62-85, I2=0). Average two-dose efficacy in children younger than 5 years (30% [95% CI 15-42], I2=0%) was lower than in those 5 years or older (64% [58-70], I2=0%; p<0·0001). Two-dose efficacy estimates of kOCV were similar during the first 2 years after vaccination, with estimates of 56% (95% CI 42-66, I2=45%) in the first year and 59% (49-67, I2=0) in the second year. The efficacy reduced to 39% (13 to 57, I2=48%) in the third year, and 26% (-46 to 63, I2=74%) in the fourth year. INTERPRETATION: Two kOCV doses provide protection against cholera for at least 3 years. One kOCV dose provides at least short-term protection, which has important implications for outbreak management. kOCVs are effective tools for cholera control. FUNDING: The Bill & Melinda Gates Foundation.


Subject(s)
Cholera Vaccines/immunology , Cholera/prevention & control , Administration, Oral , Cholera Vaccines/administration & dosage , Humans , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology
16.
Bull World Health Organ ; 95(4): 303-312, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28479625

ABSTRACT

Improving water and sanitation is the preferred choice for cholera control in the long-term. Nevertheless, vaccination is an available tool that has been shown to be a cost-effective option for cholera prevention in endemic countries or during outbreaks. In 2011 the first low-cost oral cholera vaccine for international use was given prequalification by the World Health Organization (WHO). To increase and prioritize use of the vaccine, WHO created a global stockpile in 2013 from which countries may request oral cholera vaccine for reactive campaigns. WHO has issued specific guidelines for applying for the vaccine, which was previously in short supply (despite prequalification for a second oral vaccine in 2015). The addition of a third WHO-prequalified oral cholera vaccine in 2016 is expected to increase the global stockpile considerably and alleviate supply issues. However, prioritization and best use of the vaccine (e.g. how, when and where to use) will remain challenges. We describe 12 past oral cholera vaccine campaigns, conducted in settings with varying burdens of cholera. These case studies illustrate three key challenges faced in the use of the oral cholera vaccines: regulatory hurdles, cold chain logistics and vaccine coverage and uptake. To pave the way for the introduction of current and future oral cholera vaccines, we discuss operational challenges and make recommendations for future research with respect to each of these challenges.


Améliorer l'accès à l'eau et à l'assainissement est le meilleur moyen de lutter contre le choléra à long terme. Néanmoins, la vaccination s'avère être un outil accessible et rentable pour la prévention du choléra dans les pays où cette maladie est endémique ou pendant des épidémies. En 2011, l'Organisation mondiale de la Santé (OMS) a présélectionné le premier vaccin anticholérique oral à faible coût destiné à un usage international. Afin de favoriser et de hiérarchiser l'usage de ce vaccin, l'OMS a créé en 2013 une réserve mondiale auprès de laquelle les pays peuvent demander des vaccins anticholériques oraux et mettre en œuvre des campagnes réactives. L'OMS a publié des directives spécifiques pour demander ce vaccin, qui n'était auparavant disponible qu'en quantité limitée (malgré la présélection d'un second vaccin oral en 2015). L'ajout, en 2016, d'un troisième vaccin anticholérique oral présélectionné par l'OMS devrait permettre d'augmenter sensiblement les réserves mondiales et d'atténuer les problèmes d'approvisionnement. Il restera cependant à traiter les questions de la hiérarchisation et du meilleur usage du vaccin (par ex., comment, à quel moment et à quel endroit l'utiliser). Nous décrivons ici 12 campagnes de vaccination orale contre le choléra qui ont été menées dans des régions diversement touchées par cette maladie. Ces études de cas illustrent trois grands défis qui se posent lors de l'utilisation de vaccins anticholériques oraux: les obstacles règlementaires, la logistique de la chaîne du froid et la couverture ainsi que le taux de vaccination. Afin de préparer l'introduction de vaccins anticholériques oraux, existants et futurs, nous examinons les difficultés opérationnelles et formulons des recommandations concernant de futurs travaux de recherche sur chacune de ces difficultés.


La mejora del agua y el saneamiento es la opción preferida para el control del cólera a largo plazo. Sin embargo, la vacunación es una herramienta disponible que ha demostrado ser una alternativa rentable para la prevención del cólera en países endémicos o durante brotes. En 2011, la Organización Mundial de la Salud (OMS) precalificó la primera vacuna anticolérica oral de bajo coste para uso internacional. Para aumentar y priorizar el uso de la vacuna, en 2013 la OMS creó una reserva global de la cual los países podían solicitar vacunas anticoléricas orales para campañas reactivas. La OMS ha publicado directrices específicas para la aplicación de la vacuna, cuyo suministro era escaso anteriormente (a pesar de la precalificación para una segunda vacuna oral en 2015). Está previsto que el hecho de añadir una tercera vacuna anticolérica oral precalificada por la OMS en 2016 aumente las reservas globales de forma considerable y reduzca los problemas de suministro. No obstante, la priorización y el buen uso de la vacuna (por ejemplo, cómo, cuándo y dónde utilizarla) seguirán siendo asuntos importantes. Se describen 12 campañas anteriores de vacunación oral contra el cólera, realizadas en entornos con distintos niveles de cólera. Estos estudios de casos ilustran los tres problemas principales que surgen al utilizar vacunas anticoléricas orales: obstáculos reglamentarios, logística de la gestión de la cadena de frío y cobertura y aceptación de la vacuna. Para allanar el terreno en la introducción de vacunas anticoléricas orales en el presente y en el futuro, se analizan las dificultades operativas y se presentan recomendaciones para futuras investigaciones con respecto a estos problemas.


Subject(s)
Biomedical Research/organization & administration , Cholera Vaccines/administration & dosage , Cholera Vaccines/supply & distribution , Cholera/prevention & control , Developing Countries , Administration, Oral , Biomedical Research/economics , Biomedical Research/legislation & jurisprudence , Cholera Vaccines/economics , Cost-Benefit Analysis , Disease Outbreaks/prevention & control , Drug Storage , Humans , World Health Organization
18.
J Biol Chem ; 291(52): 26613-26626, 2016 Dec 23.
Article in English | MEDLINE | ID: mdl-27799303

ABSTRACT

Doublecortin on the X-chromosome (DCX) is a neuronal microtubule-binding protein with a multitude of roles in neurodevelopment. In humans, DCX is a major genetic locus for X-linked lissencephaly. The best studied defects are in neuronal migration during corticogenesis and in the hippocampus, as well as axon and dendrite growth defects. Much effort has been directed at understanding the molecular and cellular bases of DCX-linked lissencephaly. The focus has been in particular on defects in microtubule assembly and bundling, using knock-out mice and expression of WT and mutant Dcx in non-neuronal cells. Dcx also binds other proteins besides microtubules, such as spinophilin (abbreviated spn; gene name Ppp1r9b protein phosphatase 1 regulatory subunit 9b) and the clathrin adaptors AP-1 and AP-2. Even though many non-sense and missense mutations of Dcx are known, their molecular and cellular defects are still only incompletely understood. It is also largely unknown how neurons are affected by expression of DCX patient alleles. We have now characterized several patient DCX alleles (DCX-R89G, DCX-R59H, DCX-246X, DCX-272X, and DCX-303X) using a gain-of-function dendrite growth assay in cultured rat neurons in combination with the determination of molecular binding activities and subcellular localization in non-neuronal and neuronal cells. First, we find that several mutants (Dcx-R89G and Dcx-272X) were loss-of-function alleles (as had been postulated) but surprisingly acted via different cellular mechanisms. Second, one allele (Dcx-R59H) formed cytoplasmic aggregates, which contained Hspa1B (heat shock protein 1B hsp70) and ubiquitinated proteins, trapped other cytoskeletal proteins, including spinophilin, and led to increased autophagy. This allele could thus be categorized as "off-pathway"/possibly neomorph. Our findings thus suggested that distinct DCX alleles caused dysfunction by different mechanisms.


Subject(s)
Hippocampus/pathology , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Mutation/genetics , Neurons/pathology , Neuropeptides/metabolism , Alleles , Animals , Cell Movement , Cells, Cultured , Dendrites/metabolism , Dendrites/pathology , Doublecortin Domain Proteins , Doublecortin Protein , Hippocampus/metabolism , Humans , Mice , Microtubule-Associated Proteins/genetics , Mutagenesis, Site-Directed , Neurogenesis , Neurons/metabolism , Neuropeptides/genetics , Phenotype , Rats
19.
PLoS Med ; 13(9): e1002120, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27622507

ABSTRACT

INTRODUCTION: Vaccinating a buffer of individuals around a case (ring vaccination) has the potential to target those who are at highest risk of infection, reducing the number of doses needed to control a disease. We explored the potential vaccine effectiveness (VE) of oral cholera vaccines (OCVs) for such a strategy. METHODS AND FINDINGS: This analysis uses existing data from a cluster-randomized clinical trial in which OCV or placebo was given to 71,900 participants in Kolkata, India, from 27 July to 10 September 2006. Cholera surveillance was then conducted on 144,106 individuals living in the study area, including trial participants, for 5 y following vaccination. First, we explored the risk of cholera among contacts of cholera patients, and, second, we measured VE among individuals living within 25 m of cholera cases between 8 and 28 d after onset of the index case. For the first analysis, individuals living around each index case identified during the 5-y period were assembled using a ring to define cohorts of individuals exposed to cholera index cases. An index control without cholera was randomly selected for each index case from the same population, matched by age group, and individuals living around each index control were assembled using a ring to define cohorts not exposed to cholera cases. Cholera attack rates among the exposed and non-exposed cohorts were compared using different distances from the index case/control to define the rings and different time frames to define the period at risk. For the VE analysis, the exposed cohorts were further stratified according to the level of vaccine coverage into high and low coverage strata. Overall VE was assessed by comparing the attack rates between high and low vaccine coverage strata irrespective of individuals' vaccination status, and indirect VE was assessed by comparing the attack rates among unvaccinated members between high and low vaccine coverage strata. Cholera risk among the cohort exposed to cholera cases was 5-11 times higher than that among the cohort not exposed to cholera cases. The risk gradually diminished with an increase in distance and time. The overall and indirect VE measured between 8 and 28 d after exposure to a cholera index case during the first 2 y was 91% (95% CI 62%-98%) and 93% (95% CI 44%-99%), respectively. VE persisted for 5 y after vaccination and was similar whether the index case was a young child (<5 y) or was older. Of note, this study was a reanalysis of a cholera vaccine trial that used two doses; thus, a limitation of the study relates to the assumption that a single dose, if administered quickly, will induce a similar level of total and indirect protection over the short term as did two doses. CONCLUSIONS: These findings suggest that high-level protection can be achieved if individuals living close to cholera cases are living in a high coverage ring. Since this was an observational study including participants who had received two doses of vaccine (or placebo) in the clinical trial, further studies are needed to determine whether a ring vaccination strategy, in which vaccine is given quickly to those living close to a case, is feasible and effective. TRIAL REGISTRATION: ClinicalTrials.gov NCT00289224.


Subject(s)
Cholera Vaccines/pharmacology , Cholera/prevention & control , Vibrio cholerae/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cluster Analysis , Female , Humans , Incidence , India , Infant , Male , Middle Aged , Risk , Young Adult
20.
Trop Med Int Health ; 21(2): 194-201, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26681205

ABSTRACT

Studies on safety, immunogenicity and efficacy of the killed, bivalent whole cell oral cholera vaccine (Shanchol) have been conducted in historically endemic settings of Asia. Recent cholera vaccination campaigns in Haiti and Guinea have also demonstrated favourable immunogenicity and effectiveness in nonendemic outbreak settings. We performed a secondary analysis, comparing immune responses of Shanchol from two randomised controlled trials performed in an endemic and a less endemic area (Addis Ababa) during a nonoutbreak setting. While Shanchol may offer some degree of immediate protection in primed populations living in cholera endemic areas, as well as being highly immunogenic in less endemic settings, understanding the characteristics of immune responses in each of these areas is vital in determining ideal dosing strategies that offer the greatest public health impact to populations from areas with varying degrees of cholera endemicity.


Subject(s)
Cholera Vaccines/immunology , Cholera/prevention & control , Endemic Diseases , Vaccination , Administration, Oral , Adolescent , Adult , Child , Child, Preschool , Cholera/epidemiology , Clinical Protocols , Ethiopia/epidemiology , Female , Humans , India/epidemiology , Male , Public Health , Vaccines, Inactivated/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...