Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 188: 145-52, 2015.
Article in English | MEDLINE | ID: mdl-25736893

ABSTRACT

This study investigates the influence of mixotrophy on physiology and metabolism by analysis of global gene expression in unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 (henceforth Cyanothece 51142). It was found that Cyanothece 51142 continues to oscillate between photosynthesis and respiration in continuous light under mixotrophy with cycle time of ∼ 13 h. Mixotrophy is marked by an extended respiratory phase compared with photoautotrophy. It can be argued that glycerol provides supplementary energy for nitrogen fixation, which is derived primarily from the glycogen reserves during photoautotrophy. The genes of NDH complex, cytochrome c oxidase and ATP synthase are significantly overexpressed in mixotrophy during the day compared to autotrophy with synchronous expression of the bidirectional hydrogenase genes possibly to maintain redox balance. However, nitrogenase complex remains exclusive to nighttime metabolism concomitantly with uptake hydrogenase. This study throws light on interrelations between metabolic pathways with implications in design of hydrogen producer strains.


Subject(s)
Cyanobacteria/metabolism , Cyanothece/metabolism , Metabolic Networks and Pathways , Autotrophic Processes , Biotechnology/methods , Carbon Dioxide/chemistry , Cluster Analysis , Culture Media , Electron Transport , Gene Expression Profiling , Glycerol/chemistry , Glycogen/chemistry , Hydrogen/chemistry , Hydrogen-Ion Concentration , Nitrogen/chemistry , Nitrogen Fixation , Nitrogenase/chemistry , Oligonucleotide Array Sequence Analysis , Oscillometry , Photobioreactors , Photochemical Processes , Photosynthesis , Respiratory Burst , Transcriptome
2.
Front Microbiol ; 4: 374, 2013.
Article in English | MEDLINE | ID: mdl-24367360

ABSTRACT

Cyanobacteria, a group of photosynthetic prokaryotes, oscillate between day and night time metabolisms with concomitant oscillations in gene expression in response to light/dark cycles (LD). The oscillations in gene expression have been shown to sustain in constant light (LL) with a free running period of 24 h in a model cyanobacterium Synechococcus elongatus PCC 7942. However, equivalent oscillations in metabolism are not reported under LL in this non-nitrogen fixing cyanobacterium. Here we focus on Cyanothece sp. ATCC 51142, a unicellular, nitrogen-fixing cyanobacterium known to temporally separate the processes of oxygenic photosynthesis and oxygen-sensitive nitrogen fixation. In a recent report, metabolism of Cyanothece 51142 has been shown to oscillate between photosynthetic and respiratory phases under LL with free running periods that are temperature dependent but significantly shorter than the circadian period. Further, the oscillations shift to circadian pattern at moderate cell densities that are concomitant with slower growth rates. Here we take this understanding forward and demonstrate that the ultradian rhythm under LL sustains at much higher cell densities when grown under turbulent regimes that simulate flashing light effect. Our results suggest that the ultradian rhythm in metabolism may be needed to support higher carbon and nitrogen requirements of rapidly growing cells under LL. With a comprehensive Real time PCR based gene expression analysis we account for key regulatory interactions and demonstrate the interplay between clock genes and the genes of key metabolic pathways. Further, we observe that several genes that peak at dusk in Synechococcus peak at dawn in Cyanothece and vice versa. The circadian rhythm of this organism appears to be more robust with peaking of genes in anticipation of the ensuing photosynthetic and respiratory metabolic phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...