Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
2.
Cell Commun Signal ; 21(1): 112, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37189133

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) from Gram-positive bacteria have gained considerable importance as a novel transport system of virulence factors in host-pathogen interactions. Bacillus cereus is a Gram-positive human pathogen, causing gastrointestinal toxemia as well as local and systemic infections. The pathogenicity of enteropathogenic B. cereus has been linked to a collection of virulence factors and exotoxins. Nevertheless, the exact mechanism of virulence factor secretion and delivery to target cells is poorly understood. RESULTS: Here, we investigate the production and characterization of enterotoxin-associated EVs from the enteropathogenic B. cereus strain NVH0075-95 by using a proteomics approach and studied their interaction with human host cells in vitro. For the first time, comprehensive analyses of B. cereus EV proteins revealed virulence-associated factors, such as sphingomyelinase, phospholipase C, and the three-component enterotoxin Nhe. The detection of Nhe subunits was confirmed by immunoblotting, showing that the low abundant subunit NheC was exclusively detected in EVs as compared to vesicle-free supernatant. Cholesterol-dependent fusion and predominantly dynamin-mediated endocytosis of B. cereus EVs with the plasma membrane of intestinal epithelial Caco2 cells represent entry routes for delivery of Nhe components to host cells, which was assessed by confocal microscopy and finally led to delayed cytotoxicity. Furthermore, we could show that B. cereus EVs elicit an inflammatory response in human monocytes and contribute to erythrocyte lysis via a cooperative interaction of enterotoxin Nhe and sphingomyelinase. CONCLUSION: Our results provide insights into the interaction of EVs from B. cereus with human host cells and add a new layer of complexity to our understanding of multicomponent enterotoxin assembly, offering new opportunities to decipher molecular processes involved in disease development. Video Abstract.


Subject(s)
Bacillus cereus , Enterotoxins , Humans , Enterotoxins/analysis , Enterotoxins/metabolism , Bacillus cereus/metabolism , Caco-2 Cells , Sphingomyelin Phosphodiesterase/metabolism , Virulence Factors/metabolism , Bacterial Proteins/metabolism
3.
Pathogens ; 10(12)2021 Dec 12.
Article in English | MEDLINE | ID: mdl-34959572

ABSTRACT

Chlamydia trachomatis is an obligate intracellular pathogenic bacterium with a biphasic developmental cycle manifesting two distinct morphological forms: infectious elementary bodies (EBs) and replicative intracellular reticulate bodies (RBs). Current standard protocols for quantification of the isolates assess infectious particles by titering inclusion-forming units, using permissive cell lines, and analyzing via immunofluorescence. Enumeration of total particle counts is achieved by counting labeled EBs/RBs using a fluorescence microscope. Both methods are time-consuming with a high risk of observer bias. For a better assessment of C. trachomatis preparations, we developed a simple and time-saving flow cytometry-based workflow for quantifying small particles, such as EBs with a size of 300 nm. This included optimization of gain and threshold settings with the addition of a neutral density filter for small-particle discrimination. The nucleic acid dye SYBR® Green I (SGI) was used together with propidium iodide and 5(6)-carboxyfluorescein diacetate to enumerate and discriminate between live and dead bacteria. We found no significant differences between the direct particle count of SGI-stained C. trachomatis preparations measured by microscopy or flow cytometry (p > 0.05). Furthermore, we completed our results by introducing a cell culture-independent viability assay. Our measurements showed very good reproducibility and comparability to the existing state-of-the-art methods, indicating that the evaluation of C. trachomatis preparations by flow cytometry is a fast and reliable method. Thus, our method facilitates an improved assessment of the quality of C. trachomatis preparations for downstream applications.

4.
Int J Obes (Lond) ; 43(6): 1319-1324, 2019 06.
Article in English | MEDLINE | ID: mdl-30518824

ABSTRACT

Energy dissipation through the promotion of brown adipose tissue (BAT) or browning of white adipose tissue has recently evolved as novel promising concept in the fight against metabolic disease. New evidence suggests that hormones can contribute to the thermogenic programming of adipocytes through paracrine or endocrine actions. Recent studies in rodents identified parathyroid hormone (PTH) and PTH-related peptide as mediators of energy wasting in cachexia models due to adipocyte browning. However, the effects of PTH on human adipocyte thermogenesis and metabolic activity are unknown. Here we isolated subcutaneous white adipocyte precursor cells (APCs) from human donors followed by stimulation with recombinant PTH. Our data show that acute and chronic PTH administration in primary in vitro differentiated human subcutaneous adipocytes induces a molecular thermogenic program with increased mitochondrial activity and oxidative respiratory capacity. PTH also enhances hormone sensitive lipase activity and lipolysis in human adipocytes which may contribute to the observed thermogenic effects. In summary, we demonstrate here that PTH is a novel mediator of human adipocyte browning, suggesting a hitherto unknown endocrine axis between the parathyroid gland and adipose tissue in humans.


Subject(s)
Adipocytes, White/metabolism , Adipose Tissue, Brown/metabolism , Energy Metabolism , Parathyroid Hormone/metabolism , Thermogenesis , Adipocytes, White/cytology , Adipose Tissue, Brown/cytology , Cell Differentiation , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL