Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
2.
Orphanet J Rare Dis ; 18(1): 59, 2023 03 19.
Article in English | MEDLINE | ID: mdl-36935482

ABSTRACT

BACKGROUND: Terminal 6q deletions are rare, and the number of well-defined published cases is limited. Since parents of children with these aberrations often search the internet and unite via international social media platforms, these dedicated platforms may hold valuable knowledge about additional cases. The Chromosome 6 Project is a collaboration between researchers and clinicians at the University Medical Center Groningen and members of a Chromosome 6 support group on Facebook. The aim of the project is to improve the surveillance of patients with chromosome 6 aberrations and the support for their families by increasing the available information about these rare aberrations. This parent-driven research project makes use of information collected directly from parents via a multilingual online questionnaire. Here, we report our findings on 93 individuals with terminal 6q deletions and 11 individuals with interstitial 6q26q27 deletions, a cohort that includes 38 newly identified individuals. RESULTS: Using this cohort, we can identify a common terminal 6q deletion phenotype that includes microcephaly, dysplastic outer ears, hypertelorism, vision problems, abnormal eye movements, dental abnormalities, feeding problems, recurrent infections, respiratory problems, spinal cord abnormalities, abnormal vertebrae, scoliosis, joint hypermobility, brain abnormalities (ventriculomegaly/hydrocephaly, corpus callosum abnormality and cortical dysplasia), seizures, hypotonia, ataxia, torticollis, balance problems, developmental delay, sleeping problems and hyperactivity. Other frequently reported clinical characteristics are congenital heart defects, kidney problems, abnormalities of the female genitalia, spina bifida, anal abnormalities, positional foot deformities, hypertonia and self-harming behaviour. The phenotypes were comparable up to a deletion size of 7.1 Mb, and most features could be attributed to the terminally located gene DLL1. Larger deletions that include QKI (> 7.1 Mb) lead to a more severe phenotype that includes additional clinical characteristics. CONCLUSIONS: Terminal 6q deletions cause a common but highly variable phenotype. Most clinical characteristics can be linked to the smallest terminal 6q deletions that include the gene DLL1 (> 500 kb). Based on our findings, we provide recommendations for clinical follow-up and surveillance of individuals with terminal 6q deletions.


Subject(s)
Abnormalities, Multiple , Nervous System Malformations , Social Media , Female , Humans , Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 6 , Nervous System Malformations/genetics , Phenotype , Seizures/genetics
3.
Orphanet J Rare Dis ; 18(1): 68, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36964621

ABSTRACT

BACKGROUND: Terminal 6p deletions are rare, and information on their clinical consequences is scarce, which impedes optimal management and follow-up by clinicians. The parent-driven Chromosome 6 Project collaborates with families of affected children worldwide to better understand the clinical effects of chromosome 6 aberrations and to support clinical guidance. A microarray report is required for participation, and detailed phenotype information is collected directly from parents through a multilingual web-based questionnaire. Information collected from parents is then combined with case data from literature reports. Here, we present our findings on 13 newly identified patients and 46 literature cases with genotypically well-characterised terminal and subterminal 6p deletions. We provide phenotype descriptions for both the whole group and for subgroups based on deletion size and HI gene content. RESULTS: The total group shared a common phenotype characterised by ocular anterior segment dysgenesis, vision problems, brain malformations, congenital defects of the cardiac septa and valves, mild to moderate hearing impairment, eye movement abnormalities, hypotonia, mild developmental delay and dysmorphic features. These characteristics were observed in all subgroups where FOXC1 was included in the deletion, confirming a dominant role for this gene. Additional characteristics were seen in individuals with terminal deletions exceeding 4.02 Mb, namely complex heart defects, corpus callosum abnormalities, kidney abnormalities and orofacial clefting. Some of these additional features may be related to the loss of other genes in the terminal 6p region, such as RREB1 for the cardiac phenotypes and TUBB2A and TUBB2B for the cerebral phenotypes. In the newly identified patients, we observed previously unreported features including gastrointestinal problems, neurological abnormalities, balance problems and sleep disturbances. CONCLUSIONS: We present an overview of the phenotypic characteristics observed in terminal and subterminal 6p deletions. This reveals a common phenotype that can be highly attributable to haploinsufficiency of FOXC1, with a possible additional effect of other genes in the 6p25 region. We also delineate the developmental abilities of affected individuals and report on previously unrecognised features, showing the added benefit of collecting information directly from parents. Based on our overview, we provide recommendations for clinical surveillance to support clinicians, patients and families.


Subject(s)
Eye Abnormalities , Heart Defects, Congenital , Social Media , Humans , Phenotype , Chromosome Aberrations , Eye Abnormalities/genetics , Heart Defects, Congenital/genetics , Chromosome Deletion , Chromosomes, Human, Pair 6/genetics
4.
Am J Med Genet A ; 191(3): 896-898, 2023 03.
Article in English | MEDLINE | ID: mdl-36541401

ABSTRACT

Uncombable hair syndrome is a hair shaft condition in which the hair is frizzy, light in color (silver to light brown), and cannot be combed flat. Autosomal dominant (with complete or incomplete penetrance), autosomal recessive, and sporadic cases have been reported. In 2016 causative mutations in three genes were identified for uncombable hair syndrome, all with an autosomal recessive inheritance pattern: PADI3, TGM3, and TCHH. In many cases, however, there is still no molecular diagnosis. Here, we describe a case of autosomal recessive uncombable hair syndrome resulting from maternal uniparental disomy of chromosome 1.


Subject(s)
Hair Diseases , Uniparental Disomy , Humans , Uniparental Disomy/genetics , Chromosomes, Human, Pair 1 , Hair Diseases/genetics , Hair , Transglutaminases/genetics
5.
Eur J Hum Genet ; 29(11): 1669-1676, 2021 11.
Article in English | MEDLINE | ID: mdl-34456334

ABSTRACT

Deletions that include the gene TAB2 and TAB2 loss-of-function variants have previously been associated with congenital heart defects and cardiomyopathy. However, other features, including short stature, facial dysmorphisms, connective tissue abnormalities and a variable degree of developmental delay, have only been mentioned occasionally in literature and thus far not linked to TAB2. In a large-scale, social media-based chromosome 6 study, we observed a shared phenotype in patients with a 6q25.1 deletion that includes TAB2. To confirm if this phenotype is caused by haploinsufficiency of TAB2 and to delineate a TAB2-related phenotype, we subsequently sequenced TAB2 in patients with matching phenotypes and recruited patients with pathogenic TAB2 variants detected by exome sequencing. This identified 11 patients with a deletion containing TAB2 (size 1.68-14.31 Mb) and 14 patients from six families with novel truncating TAB2 variants. Twenty (80%) patients had cardiac disease, often mitral valve defects and/or cardiomyopathy, 18 (72%) had short stature and 18 (72%) had hypermobility. Twenty patients (80%) had facial features suggestive for Noonan syndrome. No substantial phenotypic differences were noted between patients with deletions and those with intragenic variants. We then compared our patients to 45 patients from the literature. All literature patients had cardiac diseases, but syndromic features were reported infrequently. Our study shows that the phenotype in 6q25.1 deletions is caused by haploinsufficiency of TAB2 and that TAB2 is associated not just with cardiac disease, but also with a distinct phenotype, with features overlapping with Noonan syndrome. We propose the name "TAB2-related syndrome".


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cardiomyopathies/genetics , Dwarfism/genetics , Heart Valve Diseases/genetics , Joint Instability/genetics , Phenotype , Cardiomyopathies/pathology , Chromosomes, Human, Pair 6/genetics , Dwarfism/pathology , Gene Deletion , Heart Valve Diseases/pathology , Humans , Joint Instability/pathology , Mitral Valve/pathology , Syndrome
6.
Mol Ther Methods Clin Dev ; 17: 337-348, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32071926

ABSTRACT

Pompe disease is a metabolic disorder caused by a deficiency of the glycogen-hydrolyzing lysosomal enzyme acid α-glucosidase (GAA), which leads to progressive muscle wasting. This autosomal-recessive disorder is the result of disease-associated variants located in the GAA gene. In the present study, we performed extended molecular diagnostic analysis to identify novel disease-associated variants in six suspected Pompe patients from four different families for which conventional diagnostic assays were insufficient. Additional assays, such as a generic-splicing assay, minigene analysis, SNP array analysis, and targeted Sanger sequencing, allowed the identification of an exonic deletion, a promoter deletion, and a novel splicing variant located in the 5' UTR. Furthermore, we describe the diagnostic process for an infantile patient with an atypical phenotype, consisting of left ventricular hypertrophy but no signs of muscle weakness or motor problems. This led to the identification of a genetic mosaicism for a very severe GAA variant caused by a segmental uniparental isodisomy (UPD). With this study, we aim to emphasize the need for additional analyses to detect new disease-associated GAA variants and non-Mendelian genotypes in Pompe disease where conventional DNA diagnostic assays are insufficient.

7.
BMC Med Genomics ; 12(1): 170, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31779608

ABSTRACT

BACKGROUND: In recent years, the amount of genomic data produced in clinical genetics services has increased significantly due to the advent of next-generation sequencing. This influx of genomic information leads to continuous changes in knowledge on how genetic variants relate to hereditary disease. These changes can have important consequences for patients who have had genetic testing in the past, as new information may affect their clinical management. When and how patients should be recontacted after new genetic information becomes available has been investigated extensively. However, the issue of how to handle the changing nature of genetic information remains underexplored in a laboratory setting, despite it being the first stage at which changes in genetic data are identified and managed. METHODS: The authors organized a 7-day online focus group discussion. Fifteen clinical laboratory geneticists took part. All (nine) Dutch clinical molecular genetics diagnostic laboratories were represented. RESULTS: Laboratories in our study reinterpret genetic variants reactively, e.g. at the request of a clinician or following identification of a previously classified variant in a new patient. Participants currently deemed active, periodic reinterpretation to be unfeasible and opinions differed on whether it is desirable, particularly regarding patient autonomy and the main responsibilities of the laboratory. The efficacy of reinterpretation was questioned in the presence of other strategies, such as reanalysis and resequencing of DNA. Despite absence of formal policy regarding when to issue a new report for clinicians due to reclassified genetic data, participants indicated similar practice across all laboratories. However, practice differed significantly between laboratory geneticists regarding the reporting of VUS reclassifications. CONCLUSION: Based on the results, the authors formulated five challenges needing to be addressed in future laboratory guidelines: 1. Should active reinterpretation of variants be conducted by the laboratory as a routine practice? 2. How does reinterpretation initiated by the laboratory relate to patient expectations and consent? 3. When should reinterpreted data be considered clinically significant and communicated from laboratory to clinician? 4. Should reinterpretation, reanalysis or a new test be conducted? 5. How are reclassifications perceived and how might this affect laboratory practice?


Subject(s)
Genetics , Laboratories , Focus Groups , High-Throughput Nucleotide Sequencing
8.
Eur J Hum Genet ; 27(6): 919-927, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30737479

ABSTRACT

Analyses in our diagnostic DNA laboratory include genes involved in autosomal recessive (AR) lysosomal storage disorders such as glycogenosis type II (Pompe disease) and mucopolysaccharidosis type I (MPSI, Hurler disease). We encountered 4 cases with apparent homozygosity for a disease-causing sequence variant that could be traced to one parent only. In addition, in a young child with cardiomyopathy, in the absence of other symptoms, a diagnosis of Pompe disease was considered. Remarkably, he presented with different enzymatic and genotypic features between leukocytes and skin fibroblasts. All cases were examined with microsatellite markers and SNP genotyping arrays. We identified one case of total uniparental disomy (UPD) of chromosome 17 leading to Pompe disease and three cases of segmental uniparental isodisomy (UPiD) causing Hurler-(4p) or Pompe disease (17q). One Pompe patient with unusual combinations of features was shown to have a mosaic segmental UPiD of chromosome 17q. The chromosome 17 UPD cases amount to 11% of our diagnostic cohort of homozygous Pompe patients (plus one case of pseudoheterozygosity) where segregation analysis was possible. We conclude that inclusion of parental DNA is mandatory for reliable DNA diagnostics. Mild or unusual phenotypes of AR diseases should alert physicians to the possibility of mosaic segmental UPiD. SNP genotyping arrays are used in diagnostic workup of patients with developmental delay. Our results show that even small Regions of Homozygosity that include telomeric areas are worth reporting, regardless of the imprinting status of the chromosome, as they might indicate segmental UPiD.


Subject(s)
Glycogen Storage Disease Type II/genetics , Mucopolysaccharidosis I/genetics , Polymorphism, Single Nucleotide , Uniparental Disomy , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male
9.
Eur J Med Genet ; 62(4): 265-269, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30125676

ABSTRACT

We studied the presence of benign infantile epilepsy (BIE), paroxysmal kinesigenic dyskinesia (PKD), and PKD with infantile convulsions (PKD/IC) in patients with a 16p11.2 deletion including PRRT2 or with a PRRT2 loss-of-function sequence variant. Index patients were recruited from seven Dutch university hospitals. The presence of BIE, PKD and PKD/IC was retrospectively evaluated using questionnaires and medical records. We included 33 patients with a 16p11.2 deletion: three (9%) had BIE, none had PKD or PKD/IC. Twelve patients had a PRRT2 sequence variant: BIE was present in four (p = 0.069), PKD in six (p < 0.001) and PKD/IC in two (p = 0.067). Most patients with a deletion had undergone genetic testing because of developmental problems (87%), whereas all patients with a sequence variant were tested because of a movement disorder (55%) or epilepsy (45%). BIE, PKD and PKD/IC clearly showed incomplete penetrance in patients with 16p11.2 deletions, but were found in all and 95% of patients with a PRRT2 sequence variant in our study and a large literature cohort, respectively. Deletions and sequence variants have the same underlying loss-of-function disease mechanism. Thus, differences in ascertainment have led to overestimating the frequency of BIE, PKD and PKD/IC in patients with a PRRT2 sequence variant. This has important implications for counseling if genome-wide sequencing shows such variants in patients not presenting the PRRT2-related phenotypes.


Subject(s)
Autistic Disorder/genetics , Chromosome Disorders/genetics , Intellectual Disability/genetics , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Phenotype , Adolescent , Adult , Autistic Disorder/pathology , Child , Child, Preschool , Chromosome Deletion , Chromosome Disorders/pathology , Chromosomes, Human, Pair 16/genetics , Female , Humans , Intellectual Disability/pathology , Male
10.
Eur J Hum Genet ; 26(10): 1478-1489, 2018 10.
Article in English | MEDLINE | ID: mdl-29904178

ABSTRACT

Proximal 6q (6q11-q15) deletions are extremely rare and little is known about their phenotypic consequences. Since parents and caregivers now use social media to seek information on rare disorders, the Chromosome 6 Project has successfully collaborated with a Facebook group to collect data on individuals worldwide. Here we describe a cohort of 20 newly identified individuals and 25 literature cases with a proximal 6q deletion. Microarray results and phenotype data were reported directly by parents via a multilingual online questionnaire. This led to phenotype descriptions for five subregions of proximal 6q deletions; comparing the subgroups revealed that 6q11q14.1 deletions presented less severe clinical characteristics than 6q14.2q15 deletions. Gastroesophageal reflux, tracheo/laryngo/bronchomalacia, congenital heart defects, cerebral defects, seizures, and vision and respiratory problems were predominant in those with 6q14.2q15 deletions. Problems related to connective tissue (hypermobility, hernias and foot deformities) were predominantly seen in deletions including the COL12A1 gene (6q13). Congenital heart defects could be linked to deletions of MAP3K7 (6q15) or TBX18 (6q14.3). We further discuss the role of ten genes known or assumed to be related to developmental delay and/or autism (BAI3, RIMS1, KCNQ5, HTR1B, PHIP, SYNCRIP, HTR1E, ZNF292, AKIRIN2 and EPHA7). The most influential gene on the neurodevelopmental phenotype seems to be SYNCRIP (6q14.3), while deletions that include more than two of these genes led to more severe developmental delay. We demonstrate that approaching individuals via social media and collecting data directly from parents is a successful strategy, resulting in better information to counsel families.


Subject(s)
Abnormalities, Multiple/genetics , Chromosomes, Human, Pair 6/genetics , Developmental Disabilities/genetics , Social Media , Abnormalities, Multiple/physiopathology , Child , Chromosome Deletion , Developmental Disabilities/physiopathology , Female , Genetic Counseling/trends , Humans , Male , Phenotype
11.
Epilepsia Open ; 2(2): 244-254, 2017 06.
Article in English | MEDLINE | ID: mdl-29588953

ABSTRACT

Objective: To evaluate the diagnostic yield of microarray analysis in a hospital-based cohort of children with seizures and to identify novel candidate genes and susceptibility loci for epilepsy. Methods: Of all children who presented with their first seizure in the University Medical Center Groningen (January 2000 through May 2013) (n = 1,368), we included 226 (17%) children who underwent microarray analysis before June 2014. All 226 children had a definite diagnosis of epilepsy. All their copy number variants (CNVs) on chromosomes 1-22 and X that contain protein-coding genes and have a prevalence of <1% in healthy controls were evaluated for their pathogenicity. Results: Children selected for microarray analysis more often had developmental problems (82% vs. 25%, p < 0.001), facial dysmorphisms (49% vs. 8%, p < 0.001), or behavioral problems (41% vs. 13%, p < 0.001) than children who were not selected. We found known clinically relevant CNVs for epilepsy in 24 of the 226 children (11%). Seventeen of these 24 children had been diagnosed with symptomatic focal epilepsy not otherwise specified (71%) and five with West syndrome (21%). Of these 24 children, many had developmental problems (100%), behavioral problems (54%) or facial dysmorphisms (46%). We further identified five novel CNVs comprising four potential candidate genes for epilepsy: MYT1L, UNC5D, SCN4B, and NRXN3. Significance: The 11% yield in our hospital-based cohort underscores the importance of microarray analysis in diagnostic evaluation of children with epilepsy.

12.
Am J Med Genet A ; 164A(11): 2707-23, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25123976

ABSTRACT

22q11.2 deletion syndrome is one of the most common microdeletion syndromes. Most patients have a deletion resulting from a recombination of low copy repeat blocks LCR22-A and LCR22-D. Loss of the TBX1 gene is considered the most important cause of the phenotype. A limited number of patients with smaller, overlapping deletions distal to the TBX1 locus have been described in the literature. In these patients, the CRKL gene is deleted. Haploinsufficiency of this gene has also been implicated in the pathogenesis of 22q11.2 deletion syndrome. To distinguish these deletions (comprising the LCR22-B to LCR22-D region) from the more distal 22q11.2 deletions (located beyond LCR22-D), we propose the term "central 22q11.2 deletions". In the present study we report on 27 new patients with such a deletion. Together with information on previously published cases, we review the clinical findings of 52 patients. The prevalence of congenital heart anomalies and the frequency of de novo deletions in patients with a central deletion are substantially lower than in patients with a common or distal 22q11.2 deletion. Renal and urinary tract malformations, developmental delays, cognitive impairments and behavioral problems seem to be equally frequent as in patients with a common deletion. None of the patients had a cleft palate. Patients with a deletion that also encompassed the MAPK1 gene, located just distal to LCR22-D, have a different and more severe phenotype, characterized by a higher prevalence of congenital heart anomalies, growth restriction and microcephaly. Our results further elucidate genotype-phenotype correlations in 22q11.2 deletion syndrome spectrum.


Subject(s)
DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , Facies , Family , Female , Gene Order , Genetic Loci , Humans , Male , Phenotype , Prenatal Diagnosis , Young Adult
13.
Mol Cytogenet ; 7(1): 3, 2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24401281

ABSTRACT

BACKGROUND: Characteristic genomic abnormalities in patients with B cell chronic lymphocytic leukemia (CLL) have been shown to provide important prognostic information. Fluorescence in situ hybridization (FISH) and multiplex ligation-dependent probe amplification (MLPA), currently used in clinical diagnostics of CLL, are targeted tests aimed at specific genomic loci. Microarray-based genomic profiling is a new high-resolution tool that enables genome-wide analyses. The aim of this study was to compare two recently launched genomic microarray platforms, i.e., the CytoScan HD Array (Affymetrix) and the HumanOmniExpress Array (Illumina), with FISH and MLPA to ascertain whether these latter tests can be replaced by either one of the microarray platforms in a clinical diagnostic setting. RESULT: Microarray-based genomic profiling and FISH were performed in all 28 CLL patients. For an unbiased comparison of the performance of both microarray platforms 9 patients were evaluated on both platforms, resulting in the identification of exactly identical genomic aberrations. To evaluate the detection limit of the microarray platforms we included 7 patients in which the genomic abnormalities were present in a relatively low percentage of the cells (range 5-28%) as previously determined by FISH. We found that both microarray platforms allowed the detection of copy number abnormalities present in as few as 16% of the cells. In addition, we found that microarray-based genomic profiling allowed the identification of genomic abnormalities that could not be detected by FISH and/or MLPA, including a focal TP53 loss and copy neutral losses of heterozygosity of chromosome 17p. CONCLUSION: From our results we conclude that although the microarray platforms exhibit a somewhat lower limit of detection compared to FISH, they still allow the detection of copy number abnormalities present in as few as 16% of the cells. By applying similar interpretation criteria, the results obtained from both platforms were comparable. In addition, we conclude that both microarray platforms allow the identification of additional potential prognostic relevant abnormalities such as focal TP53 deletions and copy neutral losses of heterozygosity of chromosome 17p, which would have remained undetected by FISH or MLPA. The prognostic relevance of these novel genomic alterations requires further evaluation in prospective clinical trials.

14.
Am J Med Genet B Neuropsychiatr Genet ; 162B(4): 388-403, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23533028

ABSTRACT

This study aimed to elucidate the observed variable phenotypic expressivity associated with NRXN1 (Neurexin 1) haploinsufficiency by analyses of the largest cohort of patients with NRXN1 exonic deletions described to date and by comprehensively reviewing all comparable copy number variants in all disease cohorts that have been published in the peer reviewed literature (30 separate papers in all). Assessment of the clinical details in 25 previously undescribed individuals with NRXN1 exonic deletions demonstrated recurrent phenotypic features consisting of moderate to severe intellectual disability (91%), severe language delay (81%), autism spectrum disorder (65%), seizures (43%), and hypotonia (38%). These showed considerable overlap with previously reported NRXN1-deletion associated phenotypes in terms of both spectrum and frequency. However, we did not find evidence for an association between deletions involving the ß-isoform of neurexin-1 and increased head size, as was recently published in four cases with a deletion involving the C-terminus of NRXN1. We identified additional rare copy number variants in 20% of cases. This study supports a pathogenic role for heterozygous exonic deletions of NRXN1 in neurodevelopmental disorders. The additional rare copy number variants identified may act as possible phenotypic modifiers as suggested in a recent digenic model of neurodevelopmental disorders.


Subject(s)
Autistic Disorder/genetics , Cell Adhesion Molecules, Neuronal/genetics , Exons , Nerve Tissue Proteins/genetics , Seizures/genetics , Sequence Deletion , Calcium-Binding Proteins , Cohort Studies , Heterozygote , Humans , Karyotyping , Neural Cell Adhesion Molecules
15.
Am J Hum Genet ; 91(2): 252-64, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22840365

ABSTRACT

We previously reported on nonrecurrent overlapping duplications at Xp11.22 in individuals with nonsyndromic intellectual disability (ID) harboring HSD17B10, HUWE1, and the microRNAs miR-98 and let-7f-2 in the smallest region of overlap. Here, we describe six additional individuals with nonsyndromic ID and overlapping microduplications that segregate in the families. High-resolution mapping of the 12 copy-number gains reduced the minimal duplicated region to the HUWE1 locus only. Consequently, increased mRNA levels were detected for HUWE1, but not HSD17B10. Marker and SNP analysis, together with identification of two de novo events, suggested a paternally derived intrachromosomal duplication event. In four independent families, we report on a polymorphic 70 kb recurrent copy-number gain, which harbors part of HUWE1 (exon 28 to 3' untranslated region), including miR-98 and let-7f-2. Our findings thus demonstrate that HUWE1 is the only remaining dosage-sensitive gene associated with the ID phenotype. Junction and in silico analysis of breakpoint regions demonstrated simple microhomology-mediated rearrangements suggestive of replication-based duplication events. Intriguingly, in a single family, the duplication was generated through nonallelic homologous recombination (NAHR) with the use of HUWE1-flanking imperfect low-copy repeats, which drive this infrequent NAHR event. The recurrent partial HUWE1 copy-number gain was also generated through NAHR, but here, the homologous sequences used were identified as TcMAR-Tigger DNA elements, a template that has not yet been reported for NAHR. In summary, we showed that an increased dosage of HUWE1 causes nonsyndromic ID and demonstrated that the Xp11.22 region is prone to recombination- and replication-based rearrangements.


Subject(s)
Chromosomes, Human, X/genetics , DNA Copy Number Variations/genetics , Gene Rearrangement/genetics , Intellectual Disability/genetics , Ubiquitin-Protein Ligases/genetics , Chromosome Mapping , Chromosomes, Artificial, Bacterial/genetics , Comparative Genomic Hybridization , Computational Biology , DNA Replication/genetics , Gene Duplication/genetics , Humans , Pedigree , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Recombination, Genetic/genetics , Tumor Suppressor Proteins
16.
Eur J Hum Genet ; 20(2): 161-5, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21934709

ABSTRACT

The correct interpretation of copy number gains in patients with developmental delay and multiple congenital anomalies is hampered by the large number of copy number variations (CNVs) encountered in healthy individuals. The variable phenotype associated with copy number gains makes interpretation even more difficult. Literature shows that inheritence, size and presence in healthy individuals are commonly used to decide whether a certain copy number gain is pathogenic, but no general consensus has been established. We aimed to develop guidelines for interpreting gains detected by array analysis using array CGH data of 300 patients analysed with the 105K Agilent oligo array in a diagnostic setting. We evaluated the guidelines in a second, independent, cohort of 300 patients. In the first 300 patients 797 gains of four or more adjacent oligonucleotides were observed. Of these, 45.4% were de novo and 54.6% were familial. In total, 94.8% of all de novo gains and 87.1% of all familial gains were concluded to be benign CNVs. Clinically relevant gains ranged from 288 to 7912 kb in size, and were significantly larger than benign gains and gains of unknown clinical relevance (P < 0.001). Our study showed that a threshold of 200 kb is acceptable in a clinical setting, whereas heritability does not exclude a pathogenic nature of a gain. Evaluation of the guidelines in the second cohort of 300 patients revealed that the interpretation guidelines were clear, easy to follow and efficient.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Cohort Studies , Female , Humans , Male , Practice Guidelines as Topic
17.
Hum Mutat ; 33(6): 930-40, 2012 Jun.
Article in English | MEDLINE | ID: mdl-26285306

ABSTRACT

The range of commercially available array platforms and analysis software packages is expanding and their utility is improving, making reliable detection of copy-number variants (CNVs) relatively straightforward. Reliable interpretation of CNV data, however, is often difficult and requires expertise. With our knowledge of the human genome growing rapidly, applications for array testing continuously broadening, and the resolution of CNV detection increasing, this leads to great complexity in interpreting what can be daunting data. Correct CNV interpretation and optimal use of the genotype information provided by single-nucleotide polymorphism probes on an array depends largely on knowledge present in various resources. In addition to the availability of host laboratories' own datasets and national registries, there are several public databases and Internet resources with genotype and phenotype information that can be used for array data interpretation. With so many resources now available, it is important to know which are fit-for-purpose in a diagnostic setting. We summarize the characteristics of the most commonly used Internet databases and resources, and propose a general data interpretation strategy that can be used for comparative hybridization, comparative intensity, and genotype-based array data.


Subject(s)
DNA Copy Number Variations , Databases, Genetic , Diagnostic Tests, Routine , Internet , Software , Genetic Variation , Genome, Human , Humans , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Search Engine
18.
Am J Med Genet A ; 155A(11): 2739-45, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21990140

ABSTRACT

A partial deletion of chromosome band 2p25.3 (2pter) is a rarely described cytogenetic aberration in patients with intellectual disability (ID). Using microarrays we identified deletions of 2p25.3, sized 0.37-3.13 Mb, in three adult siblings and three unrelated patients. All patients had ID, obesity or overweight and/or a square-shaped stature without overt facial dysmorphic features. Combining our data with phenotypic and genotypic data of three patients from the literature we defined the minimal region of overlap which contained one gene, i.e., MYT1L. MYT1L is highly transcribed in the mouse embryonic brain where its expression is restricted to postmitotic differentiating neurons. In mouse-induced pluripotent stem cell (iPS) models, MYT1L is essential for inducing functional mature neurons. These resemble excitatory cortical neurons of the forebrain, suggesting a role for MYT1L in development of cognitive functions. Furthermore, MYT1L can directly convert human fibroblasts into functional neurons in conjunction with other transcription factors. MYT1L duplication was previously reported in schizophrenia, indicating that the gene is dosage-sensitive and that shared neurodevelopmental pathways may be affected in ID and schizophrenia. Finally, deletion of MYT1, another member of the Myelin Transcription Factor family involved in neurogenesis and highly similar to MYT1L, was recently described in ID as well. The identification of MYT1L as candidate gene for ID justifies further molecular studies aimed at detecting mutations and for mechanistic studies on its role in neuron development and on neuropathogenic effects of haploinsufficiency.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 2/genetics , DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Transcription Factors/genetics , Abnormal Karyotype , Adolescent , Adult , Body Mass Index , Child , Child, Preschool , Chromosomes, Human, Pair 2/metabolism , DNA-Binding Proteins/metabolism , Female , Haploinsufficiency , Humans , In Situ Hybridization, Fluorescence , Infant , Intellectual Disability/metabolism , Male , Metaphase , Middle Aged , Neurogenesis , Obesity/genetics , Oligonucleotide Array Sequence Analysis , Overweight/genetics , Polymorphism, Single Nucleotide , Transcription Factors/metabolism
19.
Neurogenetics ; 12(4): 315-23, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21837366

ABSTRACT

Recent array-based studies have detected a wealth of copy number variations (CNVs) in patients with autism spectrum disorders (ASD). Since CNVs also occur in healthy individuals, their contributions to the patient's phenotype remain largely unclear. In a cohort of children with symptoms of ASD, diagnosis of the index patient using ADOS-G and ADI-R was performed, and the Social Responsiveness Scale (SRS) was administered to the index patients, both parents, and all available siblings. CNVs were identified using SNP arrays and confirmed by FISH or array CGH. To evaluate the clinical significance of CNVs, we analyzed three families with multiple affected children (multiplex) and six families with a single affected child (simplex) in which at least one child carried a CNV with a brain-transcribed gene. CNVs containing genes that participate in pathways previously implicated in ASD, such as the phosphoinositol signaling pathway (PIK3CA, GIRDIN), contactin-based networks of cell communication (CNTN6), and microcephalin (MCPH1) were found not to co-segregate with ASD phenotypes. In one family, a loss of CNTN5 co-segregated with disease. This indicates that most CNVs may by themselves not be sufficient to cause ASD, but still may contribute to the phenotype by additive or epistatic interactions with inherited (transmitted) mutations or non-genetic factors. Our study extends the scope of genome-wide CNV profiling beyond de novo CNVs in sporadic patients and may aid in uncovering missing heritability in genome-wide screening studies of complex psychiatric disorders.


Subject(s)
Autistic Disorder/genetics , DNA Copy Number Variations , Neuropsychological Tests , Child , Child, Preschool , Female , Humans , Male , Pedigree , Phenotype , Social Behavior
20.
Eur J Hum Genet ; 19(11): 1152-60, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21712853

ABSTRACT

High-resolution genome-wide array analysis enables detailed screening for cryptic and submicroscopic imbalances of microscopically balanced de novo rearrangements in patients with developmental delay and/or congenital abnormalities. In this report, we added the results of genome-wide array analysis in 54 patients to data on 117 patients from seven other studies. A chromosome imbalance was detected in 37% of all patients with two-breakpoint rearrangements. In 49% of these patients, the imbalances were located in one or both breakpoint regions. Imbalances were more frequently (90%) found in complex rearrangements, with the majority (81%) having deletions in the breakpoint regions. The size of our own cohort enabled us to relate the presence of an imbalance to the clinical features of the patients by using a scoring system, the De Vries criteria, that indicates the complexity of the phenotype. The median De Vries score was significantly higher (P=0.002) in those patients with an imbalance (5, range 1-9) than in patients with a normal array result (3, range 0-7). This study provides accurate percentages of cryptic imbalances that can be detected by genome-wide array analysis in simple and complex de novo microscopically balanced chromosome rearrangements and confirms that these imbalances are more likely to occur in patients with a complex phenotype.


Subject(s)
Chromosome Aberrations , Comparative Genomic Hybridization , Genome, Human , Abnormalities, Multiple/genetics , Chromosome Breakpoints , DNA Copy Number Variations , Developmental Disabilities/genetics , Female , Humans , Karyotype , Male , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...