Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 103: 105099, 2024 May.
Article in English | MEDLINE | ID: mdl-38604089

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly prevalent and deadly type of cancer, and although pharmacotherapy remains the cornerstone of treatment, therapeutic outcomes are often unsatisfactory. Pharmacological inhibition of mammalian target of rapamycin (mTOR) has been closely associated with HCC regression. METHODS: Herein, we covalently conjugated AZD8055, a potent mTORC1/2 blocker, with a small panel of unsaturated fatty acids via a dynamically activating linkage to enable aqueous self-assembly of prodrug conjugates to form mTOR nanoblockers. Cell-based experiments were carried out to evaluate the effects of the nanoblocker against hepatocellular carcinoma (HCC) cells. The orthotopic and subcutaneous HCC mouse models were established to examine its antitumour activity. FINDINGS: Among several fatty acids as promoieties, linoleic acid-conjugated self-assembling nanoblocker exhibited optimal size distribution and superior physiochemical properties. Compared with free agents, PEGylated AZD8055 nanoblocker (termed AZD NB) was pharmacokinetically optimized after intravenous administration. In vivo investigations confirmed that AZD NB significantly suppressed tumour outgrowth in subcutaneous HCCLM3 xenograft, Hepatoma-22, and orthotopic Hepa1-6 liver tumour models. Strikingly, treatment with AZD NB, but not free agent, increased intratumour infiltration of IFN-γ+CD8+ T cells and CD8+ memory T cells, suggesting a potential role of the mTOR nanoblocker to remodel the tumour microenvironment. Overall, a single conjugation with fatty acid transformed a hydrophobic mTOR blocker into a systemically injectable nanomedicine, representing a facile and generalizable strategy for improving the therapeutic index of mTOR inhibition-based cancer therapy. INTERPRETATION: The mTOR inhibition by chemically engineered nanoblocker presented here had enhanced efficacy against tumours compared with the pristine drug and thus has the potential to improve the survival outcomes of patients with HCC. Additionally, this new nanosystem derived from co-assembling of small-molecule prodrug entities can serve as a delivery platform for the synergistic co-administration of distinct pharmaceutical agents. FUNDING: This work was supported by the National Natural Science Foundation of China (32171368,81721091), the Zhejiang Provincial Natural Science Foundation of China (LZ21H180001), the Jinan Provincial Laboratory Research Project of Microecological Biomedicine (JNL-2022039c and JNL-2022010B), State Key Laboratory for Diagnosis and Treatment of Infectious Diseases (zz202310), and Natural Science Foundation of Shandong Province (ZR2023ZD59).


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays , Animals , Humans , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Nanoparticles/chemistry , Mice , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Morpholines/chemistry , Morpholines/pharmacology , MTOR Inhibitors/pharmacology , MTOR Inhibitors/chemistry , Disease Models, Animal
2.
Immun Inflamm Dis ; 12(1): e1143, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38270321

ABSTRACT

BACKGROUND: Peripheral blood-derived natural killer (NK) cells spontaneously lyse tumor cells without prior sensitization. However, NK cells in peripheral blood (PBNK cells) are in a resting state and exhibit inhibitory phenotypes and impaired cytotoxicity. Thus, strengthening the cytotoxic effector function of PBNK cells and improving NK cell expansion in vitro for a convenient allogeneic therapy are essential. MATERIALS AND METHODS: Pure cytokine activation and expansion of NK cells (super NK [SNK]) from peripheral blood mononuclear cells were studied. Markers of activated and inhibited NK cells and cytokine secretion by NK cells were examined using flow cytometry. NK cell antitumor activity in vitro was assessed using lactate dehydrogenase (LDH) cytotoxicity assay and an Incucyte real-time imaging system. Additionally, the function of SNK cells against ascites caused by ovarian cancer in NOD-Prkdc(em26Cd52)il2rg(em26Cd22)/Nju (NCG) mice was determined. In a further investigation of the differences between PBNK and SNK, the mRNA of both cells was sequenced and analyzed. RESULTS: Human peripheral blood mononuclear cells showed selective NK cell expansion upon cytokine activation and culture. Both SNK and PBNK cells expressed activation markers, but at different levels, and SNK cells secreted more cytokines related to cytotoxicity than PBNK cells did. Accordingly, SNK cells exhibited strong antitumor activity ex vivo and improved NCG mice survival after intraperitoneal ovarian cancer transplantation. Mechanistically, SNK cells expressed more genes associated with nucleotide metabolism, fatty acid, and ATP metabolism than PBNK cells. CONCLUSION: SNK cells derived from peripheral blood mononuclear cells have sufficiently activated mature characteristics and high antitumor activity, rendering them a highly promising and essential therapeutic approach for cancer treatment.


Subject(s)
Leukocytes, Mononuclear , Ovarian Neoplasms , Humans , Animals , Mice , Female , Mice, Inbred NOD , Killer Cells, Natural , Cytokines
SELECTION OF CITATIONS
SEARCH DETAIL
...