Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters











Publication year range
1.
Molecules ; 25(2)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936177

ABSTRACT

Pharmaceuticals, especially antibiotics, constitute an important group of aquatic contaminants given their environmental impact. Specifically, tetracycline antibiotics (TCs) are produced in great amounts for the treatment of bacterial infections in both human and veterinary medicine. Several studies have shown that, among all antibiotics, oxytetracycline hydrochloride (OTC HCl) is one of the most frequently detected TCs in soil and surface water. The results of the photocatalytic degradation of OTC HCL in aqueous suspensions (30 mg·L-1) of 0.5 wt.% cobalt-doped TiO2 catalysts are reported in this study. The heterogeneous Co-TiO2 photocatalysts were synthesized by two different solvothermal methods. Evonik Degussa Aevoxide P25 and self-prepared TiO2 modified by the same methods were used for comparison. The synthesized photocatalysts were characterized by X-ray powder diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), UV/vis diffuse reflectance spectroscopy (DRS), and N2 adsorption (BET) for specific surface area determination. The XRD and Raman results suggest that Ti4+ was substituted by Co2+ in the TiO2 crystal structure. Uv/visible spectroscopy of Co-TiO2-R showed a substantial redshift in comparison with bare TiO2-R. The photocatalytic performance of the prepared photocatalysts in OTC HCL degradation was investigated employing Uv/vis spectroscopy and high-performance liquid chromatography (HPLC). The observed initial reaction rate over Co-TiO2-R was higher compared with that of Co-TiO2-HT, self-prepared TiO2, and the commercial P25. The enhanced photocatalytic activity was attributed to the high surface area (153 m2·g-1) along with the impurity levels within the band gap (2.93 eV), promoting the charge separation and improving the charge transfer ability. From these experimental results, it can be concluded that Co-doping under reflux demonstrates better photocatalytic performances than with the hydrothermal treatment.


Subject(s)
Anti-Bacterial Agents/chemistry , Cobalt/chemistry , Nanoparticles/chemistry , Oxytetracycline/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Light , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Oxidation-Reduction , Spectrum Analysis, Raman , Ultraviolet Rays , Water Purification/instrumentation , Water Purification/methods , X-Ray Diffraction
2.
Phys Chem Chem Phys ; 20(44): 28267-28278, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30398245

ABSTRACT

Spinel ferrites (T[M1-xFex]O[MxFe2-x]O4 with 0 ≤ x ≤ 1, where M is a bivalent metal ion and the superscripts denote tetrahedral and octahedral sites) are materials commonly used in electronics due to their outstanding magnetic properties. Thus, the effect of the degree of inversion, x, on these properties is well known. However, its effect on other properties of these materials has rarely been investigated in detail. Since ferrites gained much attention during the last decade as visible light active photocatalysts and photoelectrocatalysts, understanding the effect of the degree of inversion on the optical properties became necessary. Among photocatalytically and photoelectrocatalytically active spinel ferrites, zinc ferrite (ZnFe2O4, ZFO) is one of the most widely studied materials. In this work, five ZFO samples with degrees of inversion varying from 0.07 to 0.20 were prepared by a solid-state reaction employing different annealing temperatures and subsequent quenching. Raman and UV-Vis-NIR spectra were measured and analyzed together with theoretical results obtained from ab initio calculations. Changes in the UV-Vis-NIR spectra associated with electronic transitions of tetrahedrally and octahedrally coordinated Fe3+ ions are distinguished. However, the optical band gap of the material remains unchanged as the degree of inversion varies. Based on the experimental and theoretical results, a new assignment for the Raman active internal modes and the electronic transitions of ZFO is proposed.

3.
Small ; 13(20)2017 05.
Article in English | MEDLINE | ID: mdl-28374954

ABSTRACT

Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2 , and also create dipoles that are beneficial for charge separation and decreased electron-hole recombination in the doped lattice. The Gd-doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via • OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd-doping up to 10%. Cellular internalization and biocompatibility of TiO2 @xGd NBs are tested in vitro on MG-63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.


Subject(s)
Gadolinium/chemistry , Luminescence , Nanoparticles/chemistry , Neoplasms/diagnosis , Neoplasms/therapy , Reactive Oxygen Species/metabolism , Spin Labels , Titanium/chemistry , Catalysis , Cell Line, Tumor , Cell Survival , Density Functional Theory , Humans , Hydroxyl Radical/chemistry , Magnetic Resonance Imaging , Nanoparticles/ultrastructure , Optical Imaging , Porosity , Temperature , Ultraviolet Rays , X-Ray Diffraction
4.
Faraday Discuss ; 197: 505-516, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28177018

ABSTRACT

Herein, we report the effect of the laser illumination during the diffuse-reflectance laser-flash-photolysis measurements on the morphological and optical properties of TiO2 powders. A grey-blue coloration of the TiO2 nanoparticles has been observed after intense laser illumination. This is explained by the formation of nonreactive trapped electrons accompanied by the release of oxygen atoms from the TiO2 matrix as detected by means of UV-vis and EPR spectroscopy. Moreover, in the case of the pure anatase sample a phase transition of some TiO2 nanoparticles located in the inner region from anatase to rutile occurred. It is suggested that these structural changes in TiO2 are caused by an energy and charge transfer to the TiO2 lattice.

5.
Environ Technol ; 37(21): 2687-93, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26930545

ABSTRACT

Highly crystalline anatase TiO2 nanoparticles with high BET surface area have been synthesized by thermal hydrolysis of titanium(IV) bis(ammoniumlactato) dihydroxide aqueous solutions. The photocatalytic H2 production from aqueous citric acid (CA) solutions over Pt-loaded TiO2 has been investigated under different experimental conditions, that is, different CA concentration, temperature, light intensity, and pH of Pt/TiO2 suspension. For comparison, the photocatalytic dehydrogenation of triethanolamine (TEA) has also been investigated. The highest H2 production rates were obtained at pH 3 and 9 for CA and TEA, respectively. This behavior is readily explained by the adsorption characteristic of the employed reagent on the surface of the charged TiO2. The effect of the photocatalyst loading and the light intensity on the H2 production rate showed the same behavior in the case of CA and TEA evincing that these parameters are catalyst dependent. The apparent activation energies have been determined to be 13.5 ± 1.8 and 14.7 ± 1.6 kJ mol(-1) for CA and TEA, respectively, indicating the existence of an activation energy barrier in a photocatalytic process which can be attributed to the desorption of adsorbed products.


Subject(s)
Biomass , Citric Acid/metabolism , Hydrogen/metabolism , Citric Acid/chemistry , Hydrogen/analysis , Hydrogen/chemistry , Photochemical Processes , Titanium/chemistry
6.
Chemphyschem ; 17(6): 885-92, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26710930

ABSTRACT

The dynamics of the transfer of electrons stored in TiO2 nanoparticles to As(III) , As(V) , and uranyl nitrate in water was investigated by using the stopped-flow technique. Suspensions of TiO2 nanoparticles with stored trapped electrons (etrap (-) ) were mixed with solutions of acceptor species to evaluate the reactivity by following the temporal evolution of etrap (-) by the decrease in the absorbance at λ=600 nm. The results indicate that As(V) and As(III) cannot be reduced by etrap (-) under the reaction conditions. In addition, it was observed that the presence of As(V) and As(III) strongly modified the reaction rate between O2 and etrap (-) : an increase in the rate was observed if As(V) was present and a decrease in the rate was observed in the presence of As(III) . In contrast with the As system, U(VI) was observed to react easily with etrap (-) and U(IV) formation was observed spectroscopically at λ=650 nm. The possible competence of U(VI) and NO3 (-) for their reduction by etrap (-) was analyzed. The inhibition of the U(VI) photocatalytic reduction by O2 could be attributed to the fast oxidation of U(V) and/or U(IV) .

7.
J Phys Chem B ; 119(45): 14479-85, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26468761

ABSTRACT

A solution containing ethanol as polar material and either benzene or n-dodecane as nonpolar solvent was heated by microwave irradiation employing a single-mode resonance microwave device. Although the microwave heating efficiency was expected from the just value of the relative dielectric constant (εr') or relative dielectric loss (εr″) for liquid system, it was revealed that the clustering structure of alcohol molecules expected from the excess parameter such as the excess relative dielectric loss is the important factor in the decision for efficiency of the microwave heating for the solution. This assumption and novel theory were strongly supported from the thermodynamic data such as vapor pressure and the partial enthalpy.

8.
Langmuir ; 31(22): 6229-36, 2015 Jun 09.
Article in English | MEDLINE | ID: mdl-25974749

ABSTRACT

The dynamics of the transfer of electrons stored in TiO2 nanoparticles to Cr(VI) in aqueous solution have been investigated using the stopped flow technique. TiO2 nanoparticles were previously irradiated under UV light in the presence of formic acid, and trapped electrons (e(trap)(-)) were made to react with Cr(VI) as acceptor species; other common acceptor species such as O2 and H2O2 were also tested. The temporal evolution of the number of trapped electrons was followed by the decrease in the absorbance at 600 nm, and the kinetics of the electron-transfer reaction was modeled. Additionally, the rate of formation of the surface complex between Cr(VI) and TiO2 was determined with the stopped flow technique by following the evolution of the absorbance at 400 nm of suspensions of nonirradiated TiO2 nanoparticles and Cr(VI) at different concentrations. An approximately quadratic relationship was observed between the maximum absorbance of the surface complex and the concentration of Cr(VI), suggesting that Cr(VI) adsorbs onto the TiO2 surface as dichromate. The kinetic analyses indicate that the electron transfer from TiO2 to Cr(VI) does not require the previous formation of the Cr(VI)-TiO2 surface complex, at least the complex detected here through the stopped flow experiments. When previously irradiated TiO2 was used to follow the evolution of the Cr(VI)-TiO2 complex, an inhibition of the formation of the complex was observed, which can be related to the TiO2 deactivation caused by Cr(III) deposition.

9.
Environ Sci Technol ; 48(12): 6882-90, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24856876

ABSTRACT

Asbestos-containing debris generated by the tsunami after the Great East Japan Earthquake of March 11, 2011, was processed by microwave heating. The analysis of the treated samples employing thermo gravimetry, differential thermal analysis, X-ray diffractometry, scanning electron microscopy, and phase-contrast microscopy revealed the rapid detoxification of the waste by conversion of the asbestos fibers to a nonfibrous glassy material. The detoxification by the microwave method occurred at a significantly lower processing temperature than the thermal methods actually established for the treatment of asbestos-containing waste. The lower treatment temperature is considered to be a consequence of the microwave penetration depth into the waste material and the increased intensity of the microwave electric field in the gaps between the asbestos fibers resulting in a rapid heating of the fibers inside the debris. A continuous treatment plant having a capacity of 2000 kg day(-1) of asbestos-containing waste was built in the area affected by the earthquake disaster. This treatment plant consists of a rotary kiln to burn the combustible waste (wood) and a microwave rotary kiln to treat asbestos-containing inorganic materials. The hot flue gas produced by the combustion of wood is introduced into the connected microwave rotary kiln to increase the energy efficiency of the combined process. Successful operation of this combined device with regard to asbestos decomposition is demonstrated.


Subject(s)
Asbestos/chemistry , Disasters , Environmental Restoration and Remediation/methods , Microwaves , Waste Products/analysis , Differential Thermal Analysis , Earthquakes , Japan , Microscopy, Electron, Scanning , Microscopy, Phase-Contrast , Temperature , Thermogravimetry , X-Ray Diffraction
10.
Phys Chem Chem Phys ; 16(12): 5833-45, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24549288

ABSTRACT

We recently reported a highly active photocatalyst, ruthenium-modified zinc oxide, which was found to be able to utilise the red part of the visible light spectrum for photocatalytic reactions [Bloh et al., Environ. Sci. Pollut. Res., 2012, 19, 3688-3695]. However, the origin and mechanism of the observed activity as well as the nature of the photoactive centres are still unknown. Herein, we expand on that by reporting a series of experiments specifically designed to unravel the mechanism of the visible light induced photocatalytic reactions. The absolute potentials of the valence and the conduction band edge are identified by the combined use of electrochemical impedance and UV-vis diffuse reflectance spectroscopy. The conduction band electron and the valence band hole activity are assessed through a novel approach tracing their signature oxidative species, i.e., hydrogen peroxide and hydroxyl radicals, respectively. Oxygen reduction currents are measured at different potentials to investigate the role of molecular oxygen as an electron scavenger as well as the underlying reduction pathways. Additionally, the photocatalytic activity of the samples is verified using another (ISO standard) degradation test, the gas-phase oxidation of nitric oxide. The experimental results reveal that the employed synthetic route yields a unique mixture of ruthenium(VI)-doped zinc oxide and ruthenium(VI) oxide particles with both forms of the ruthenium playing their own independent role in the enhancement of the photocatalytic activity. The ruthenium ions acting as dopants enable a better charge separation as well as the absorption of red light resulting in the direct promotion of electrons from the Ru(VI)-species to the conduction band. Both, the conduction band electrons and the thus formed Ru(VII) subsequently participate in the degradation of the pollutant molecules. The ruthenium dioxide particles, on the other hand, act as catalysts increasing the efficiency of the reaction by improving the oxygen reduction properties of the material.

11.
ACS Appl Mater Interfaces ; 6(4): 2270-8, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24476537

ABSTRACT

Transparent layers containing TiO2 have been intensively studied because of their interesting application potential including photocatalytically active and self-cleaning surfaces. In the present work, transparent TiO2-ZnO thin films on a SiO2 interlayer were successfully deposited on the surface of polycarbonate to provide polymeric sheets with a self-cleaning, superhydrophilic, and photocatalytically active surface layer. To ensure a good adhesion of the SiO2 interlayer, the polycarbonate sheets were first modified by irradiation with UV(C) light. The prepared films were characterized by UV/vis spectrophotometry, SEM, XRD, Raman spectroscopy, ellipsometry, and water contact-angle measurements. All prepared films are transparent, have thicknesses in the range between 120 and 250 nm, and possess superhydrophilic properties. Moreover, they exhibit good adhesion qualities as defined quantitatively by cross-cut tests. However, their mechanical strengths, checked by felt-abrasion tests, differ by changing the molar TiO2-ZnO ratio. The photocatalytic activity, expressed as photonic efficiency, of the coated surfaces was estimated from the kinetics of the photocatalytic degradation of methylene blue and methyl stearate. The combination between superhydrophilic properties and photocatalytic activity was determined by studying the change of water contact angle during the storage of the prepared films in the dark under an ambient atmosphere and under an atmosphere containing either acetone or isopropanol followed by UV(A) irradiation. In addition, self-cleaning properties were examined by determining the changes in the contact angle during the irradiation time after applying oleic acid to the surface. The results show that increasing the molar ratio of ZnO in TiO2 coatings up to 5% yields maximum photonic efficiency values of 0.023%, as assessed by the photocatalytic degradation of methylene blue. Moreover, the superhydrophilic coating with a molar TiO2-ZnO ratio of 1:0.05 exhibits the best self-cleaning properties combined with a good mechanical stability and a very good stability against UV irradiation.

12.
Phys Chem Chem Phys ; 15(48): 20876-86, 2013 Dec 28.
Article in English | MEDLINE | ID: mdl-24196523

ABSTRACT

Air pollution by nitrogen oxides represents a serious environmental problem in urban areas where numerous sources of these pollutants are concentrated. One approach to reduce the concentration of these air pollutants is their light-induced oxidation in the presence of molecular oxygen and a photocatalytically active building material which uses titanium dioxide as the photocatalyst. Herein, results of an investigation concerning the influence of the photon flux and the pollutant concentration on the rate of the photocatalytic oxidation of nitrogen(ii) oxide in the presence of molecular oxygen and UV(A) irradiated titanium dioxide powder are presented. A Langmuir-Hinshelwood-type rate law for the photocatalytic NO oxidation inside the photoreactor comprising four kinetic parameters is derived being suitable to describe the influence of the pollutant concentration and the photon flux on the rate of the photocatalytic oxidation of nitrogen(ii) oxide.


Subject(s)
Nitrous Oxide/chemistry , Photochemical Processes/radiation effects , Titanium/chemistry , Ultraviolet Rays , Catalysis/radiation effects , Kinetics , Oxidation-Reduction/radiation effects , Oxygen/chemistry , Surface Properties
13.
Langmuir ; 29(11): 3730-9, 2013 Mar 19.
Article in English | MEDLINE | ID: mdl-23363048

ABSTRACT

Transparent hydrophilic photocatalytic TiO2 coatings have been widely applied to endow the surfaces self-cleaning properties. A mixed metal oxide (TiO2/SiO2) can enhance the photocatalytic performance improving the ability of surface adsorption and increasing the amount of hydroxyl surface groups. The present work introduces a systematic study concerning the effect of the SiO2 addition to TiO2 films on the wettability, the photocatalytic activity, the adhesion strength, and the mechanical stability of the films. Transparent hydrophilic photocatalytic TiO2/SiO2 thin films were used to coat the polycarbonate (PC) substrate which was precoated by an intermediate SiO2 layer. The TiO2/SiO2 thin film was prepared employing a bulk TiO2 powder (Sachtleben Hombikat UV 100) and different molar ratios of tetraethoxysilane in acidic ethanol. A dip-coating process was used to deposit the films onto the polycarbonate substrate. The films were characterized by UV/vis spectrophotometry, FTIR spectroscopy, ellipsometry, BET, AFM, XRD, and water contact angle measurements. The mechanical stability and the UV resistance were examined. The photocatalytic activity of the coated surface was calculated from the kinetic analysis of methylene blue photodegradation measurements and compared with the photocatalytic activity of Pilkington Activ sheet glass. The coated surfaces displayed considerable photocatalytic activity and superhydrophilicity after exposure to UV light. The addition of SiO2 results in an improvement of the photocatalytic activity of the TiO2 film reaching the highest value at molar ratio TiO2/SiO2 equal to 1:0.9. The prepared films exhibit a good stability against UV(A) irradiation.

14.
Phys Chem Chem Phys ; 15(8): 2992-3002, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23340499

ABSTRACT

The photocatalytic conversion of various nitroaromatic compounds in alcohols employing four different types of TiO(2) (Sachtleben Hombikat UV100 as anatase, Crystal Global R34 as rutile, Evonik-Degussa Aeroxide P25 as an anatase-rutile mixture, and home-made mesoporous anatase) has been studied. The effect of platinization of these different types of TiO(2) on the reaction sequence has also been investigated. Upon irradiation of an ethanolic solution of m-nitrotoluene, as a model reaction, in the presence of the bare photocatalyst, different products were obtained according to the applied photocatalyst. It was found that the surface properties of the photocatalyst play an important role in the reaction pathway and thus in the selectivity of the products. In all cases, a simultaneous reduction of the nitro compound and an oxidation of the alcohol are induced by the photogenerated electrons and holes, respectively. An imine is then produced upon condensation of the generated aldehyde and amino compounds. Rutile was found to be more selective towards the primary amino compound (m-toluedine) while anatase catalysts gave a mixture of m-toluidine and its imine (N-ethylidene-3-methylaniline). A cyclization reaction of the produced imine to generate methyl quinoline was observed when Aeroxide P25 was used as a photocatalyst. Employing platinized TiO(2), the hydrogenation of the produced imine yielding N-alkylated products was found to occur in all cases. However, the selectivity towards the mono N-alkylated product was the best using platinized Hombikat UV100. This selectivity was found to be also influenced by the loaded amount of Pt, the platinization method, and the illumination time but not by the light intensity.

16.
Chemistry ; 18(14): 4314-21, 2012 Apr 02.
Article in English | MEDLINE | ID: mdl-22374869

ABSTRACT

The kinetics of the formation of gold nanoparticles on the surface of pre-illuminated TiO(2) have been investigated using stopped-flow technique and steady state UV/Vis spectroscopy. Excess electrons were loaded on the employed nanosized titanium dioxide particles by UV-A photolysis in the presence of methanol serving as hole scavenger, stored on them in the absence of oxygen and subsequently used for the reduction of Au(III) ions. The formation of gold nanoparticles with an average diameter of 5 nm was confirmed after mixing of the TiO(2) nanoparticles loaded with electrons with aqueous solution of tetrachloroaureate (HAuCl(4)) by their surface plasmon absorbance band at 530 nm, as well as by XRD and HRTEM measurements. The rate of formation of the gold nanoparticles was found to be a function of the concentration of the gold ions and the concentration of the stored electrons, respectively. The effect of PVA as a stabilizer of the gold nanoclusters was also studied. The observed kinetic behavior suggests that the formation of the gold nanoparticles on the TiO(2) surface is an autocatalytic process comprising of two main steps: 1) Reduction of the gold ions by the stored electrons on TiO(2) forming gold atoms that turn into gold nuclei. 2) Growth of the metal nuclei on the surface of TiO(2) forming the gold particles. Interestingly, at higher TiO(2) electron loading the excess electrons are subsequently transferred to the deposited gold metal particles resulting in "bleaching" of their surface plasmon band. This bleaching in the surface plasmon band is explained by the Fermi level equilibration of the Au/TiO(2) nanocomposites. Finally, the reduction of water resulting in the evolution of molecular hydrogen initiated by the excess electrons that have been transferred to the previously formed gold particles has also been observed. The mechanism of the underlying multistep electron-transfer process has been discussed in detail.

17.
J Hazard Mater ; 211-212: 240-6, 2012 Apr 15.
Article in English | MEDLINE | ID: mdl-22154121

ABSTRACT

Air pollution by nitrogen oxides represents a serious environmental problem in urban areas where numerous sources of these pollutants are concentrated. One approach to reduce the concentration of these air pollutants is the light-induced oxidation in the presence of molecular oxygen and a photocatalytically active building material, e.g., paints, roof tiles, or pavement stones. Herein, results of an investigation concerning the photocatalytic oxidation of nitrogen(II) oxide (NO) in the presence of molecular oxygen and UV(A) irradiated TiO(2) powder are presented. The standard operating procedure described in ISO 22197-1 which was developed to characterize the photocatalytic activity of air-cleaning products was successfully applied to determine the photocatalytic activity of a bare TiO(2) powder. The experimental data reveal that at the light intensity stipulated by the operation procedure the amount of NO removed from the gas phase by photocatalytic oxidation is strongly affected by small changes of this light intensity as well as of the NO concentration in the gas stream in the photoreactor. Therefore, these parameters have to be controlled very carefully. Based upon the experimental data obtained in this study a rate law for the photocatalytic NO oxidation inside the photoreactor is derived.


Subject(s)
Air Pollutants/chemistry , Nitrogen Oxides/chemistry , Titanium/chemistry , Air Pollutants/radiation effects , Air Pollution/prevention & control , Catalysis , Light , Nitrogen Oxides/radiation effects , Oxidation-Reduction , Photolysis
18.
J Phys Chem A ; 115(11): 2139-47, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21366310

ABSTRACT

The kinetics and the mechanism of various multielectron transfer reactions initiated by stored electrons in TiO(2) nanoparticles have been investigated employing the stopped flow technique. Moreover, the optical properties of the stored electrons in the TiO(2) nanoparticles have been studied in detail following the UV (A) photolysis of deaerated aqueous suspensions of TiO(2) nanoparticles in the presence of methanol. The reduction of common electron acceptors that are often present in photocatalytic systems such as O(2), H(2)O(2), and NO(3)(-) has been investigated. The experimental results clearly show that the stored electrons reduce O(2) and H(2)O(2) to water by multielectron transfer processes. Moreover, NO(3)(-) is reduced via the transfer of eight electrons evincing the formation of ammonia. On the other hand, the reduction of toxic metal ions, such as Cu(II), has been studied mixing their respective anoxic aqueous solutions with those containing the electrons stored in the TiO(2) particles. A two-electron transfer is found to occur, indicating the reduction of the copper metal ion into its non toxic metallic form. Other metal ions, such as Zn(II) and Mn(II), could not be reduced by TiO(2) electrons, which is readily explained on the bases of their respective redox potentials. The underlying reaction mechanisms are discussed in detail.

19.
Photochem Photobiol Sci ; 8(5): 683-90, 2009 May.
Article in English | MEDLINE | ID: mdl-19424543

ABSTRACT

Titanium dioxide was modified with Pt-polypyrrole nanocomposites through the in situ simultaneous reduction of Pt(iv) and the oxidative polymerization of pyrrole monomers at ambient temperature. The modified powders were characterized using X-ray photoelectron spectroscopy (XPS), dark-field scanning transmission electron microscopy (DF-STEM), infrared spectroscopy (IR) and by the determination of the BET surface area by nitrogen adsorption. Photocatalytic hydrogen production tests were performed employing 75 ml aqueous solution containing 2250 mumol methanol as the sacrificial electron donor. The obtained results show that 0.5 and 1.0 wt% Pt and polypyrrole, respectively, are the optimum ratios for high photocatalytic H(2) production rates. The amount of H(2) evolved during 5 h of UV-vis illumination of the suspension of Pt-polypyrrole modified TiO(2) powder is three times higher than that obtained with Pt-loaded TiO(2) prepared by a photochemical deposition method. The photonic efficiencies of the H(2) production employing 75 ml aqueous solution containing 370 mmol methanol were calculated to be 10.6 +/- 0.5 and 4.5 +/- 0.2% for TiO(2) modified with Pt-polypyrrole nanocomposites and for Pt-loaded TiO(2) prepared by a photochemical deposition method, respectively. A synergistic effect between Pt nanoparticles and polypyrrole leading to a better separation of the charge carriers is proposed to explain the enhanced reactivity of the newly synthesized photocatalyst.

20.
Chemosphere ; 67(4): 785-92, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17126882

ABSTRACT

The UV-photon-induced degradation of heptafluorobutanoic acid was investigated in acidic aqueous solutions in the presence of titanium dioxide. Heptafluorobutanoic acid could be degraded with this photocatalyst in a light-induced reaction generating carbon dioxide and fluoride anions. Carbon dioxide evolution in a significant amount occurred only in the presence of molecular oxygen and the photocatalyst. The light-induced degradation of trifluoroacetic acid, pentafluoropropanoic acid, nonafluorobutanoic acid, pentadecafluorooctanoic acid, nonafluorobutanesulfonic acid, and heptadecafluorooctanesulfonic acid in the presence of titanium dioxide was also studied. The perfluorocarboxylic acids under investigation are degraded to generate CO(2) and fluoride anions while both perfluorinated sulfonic acids are persistent under the experimental conditions employed in this study. For all compounds photonic efficiencies of the mineralization reaction were estimated to be smaller than 1x10(-5). To increase the photocatalytic activity mixed systems containing homogeneous phosphotungstic acid and heterogeneous titanium dioxide catalysts were also investigated. In the mixtures of these two photocatalysts, the formation rate of CO(2) increased with illumination time.


Subject(s)
Fluorocarbons/radiation effects , Photolysis , Titanium/chemistry , Alkanesulfonic Acids/chemistry , Alkanesulfonic Acids/radiation effects , Caprylates/chemistry , Caprylates/radiation effects , Catalysis , Environmental Pollutants/chemistry , Environmental Pollutants/radiation effects , Environmental Restoration and Remediation/methods , Fluorocarbons/chemistry , Phosphotungstic Acid/chemistry , Trifluoroacetic Acid/chemistry , Trifluoroacetic Acid/radiation effects , Ultraviolet Rays , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL