Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 16(4): 7851-60, 2015 Apr 08.
Article in English | MEDLINE | ID: mdl-25856680

ABSTRACT

The emergence of antibiotic-resistant strains in facultative anaerobic Gram-positive coccal bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), is a global health issue. Typically, MRSA strains are found associated with institutions like hospitals but recent data suggest that they are becoming more prevalent in community-acquired infections. It is thought that the incidence and prevalence of bacterial infections will continue to increase as (a) more frequent use of broad-spectrum antibiotics and immunosuppressive medications; (b) increased number of invasive medical procedures; and (c) higher incidence of neutropenia and HIV infections. Therefore, more optimal treatments, such as photodynamic therapy (PDT), are warranted. PDT requires the interaction of light, a photosensitizing agent, and molecular oxygen to induce cytotoxic effects. In this study, we investigated the efficacy and characterized the mechanism of cytotoxicity induced by photodynamic therapy sensitized by silicon phthalocyanine (Pc) 4 on (a) methicillin-sensitive Staphylococcus aureus (MSSA) (ATCC 25923); (b) community acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) (ATCC 43300); and (c) hospital acquired methicillin-resistant Staphylococcus aureus (HA-MRSA) (PFGE type 300). Our data include confocal image analysis, which confirmed that Pc 4 is taken up by all S. aureus strains, and viable cell recovery assay, which showed that concentrations as low as 1.0 µM Pc 4 incubated for 3 h at 37 °C followed by light at 2.0 J/cm2 can reduce cell survival by 2-5 logs. These results are encouraging, but before PDT can be utilized as an alternative treatment for eradicating resistant strains, we must first characterize the mechanism of cell death that Pc 4-based PDT employs in eliminating these pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Indoles/pharmacology , Organosilicon Compounds/pharmacology , Photosensitizing Agents/pharmacology , Staphylococcus aureus/drug effects , Community-Acquired Infections/drug therapy , Cross Infection/drug therapy , Humans , Microbial Sensitivity Tests , Photochemotherapy/methods , Staphylococcal Infections/drug therapy , Staphylococcus aureus/classification
2.
Antimicrob Agents Chemother ; 58(6): 3029-34, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24614382

ABSTRACT

Trichophyton rubrum is the leading pathogen that causes long-lasting skin and nail dermatophyte infections. Currently, topical treatment consists of terbinafine for the skin and ciclopirox for the nails, whereas systemic agents, such as oral terbinafine and itraconazole, are also prescribed. These systemic drugs have severe side effects, including liver toxicity. Topical therapies, however, are sometimes ineffective. This led us to investigate alternative treatment options, such as photodynamic therapy (PDT). Although PDT is traditionally recognized as a therapeutic option for treating a wide range of medical conditions, including age-related macular degeneration and malignant cancers, its antimicrobial properties have also received considerable attention. However, the mechanism(s) underlying the susceptibility of dermatophytic fungi to PDT is relatively unknown. As a noninvasive treatment, PDT uses a photosensitizing drug and light, which, in the presence of oxygen, results in cellular destruction. In this study, we investigated the mechanism of cytotoxicity of PDT in vitro using the silicon phthalocyanine (Pc) 4 [SiPc(OSi(CH3)2(CH2)3N(CH3)2)(OH)] in T. rubrum. Confocal microscopy revealed that Pc 4 binds to cytoplasmic organelles, and upon irradiation, reactive oxygen species (ROS) are generated. The impairment of fungal metabolic activities as measured by an XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxyanilide inner salt) assay indicated that 1.0 µM Pc 4 followed by 670 to 675 nm light at 2.0 J/cm(2) reduced the overall cell survival rate, which was substantiated by a dry weight assay. In addition, we found that this therapeutic approach is effective against terbinafine-sensitive (24602) and terbinafine-resistant (MRL666) strains. These data suggest that Pc 4-PDT may have utility as a treatment for dermatophytosis.


Subject(s)
Antifungal Agents/pharmacology , Indoles/pharmacology , Organosilicon Compounds/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Tinea/drug therapy , Trichophyton/drug effects , Arthrodermataceae/cytology , Arthrodermataceae/drug effects , Arthrodermataceae/metabolism , Indoles/chemistry , Light , Naphthalenes/pharmacology , Organosilicon Compounds/chemistry , Reactive Oxygen Species/metabolism , Skin/microbiology , Terbinafine , Tetrazolium Salts , Trichophyton/cytology , Trichophyton/metabolism , Trichophyton/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL