Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38500298

ABSTRACT

Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.

2.
Sci Total Environ ; 917: 170336, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38280594

ABSTRACT

Urbanization is an important driver of global change associated with a set of environmental modifications that affect the introduction and distribution of invasive non-native species (species with populations transported by humans beyond their natural biogeographic range that established and are spreading in their introduced range; hereafter, invasive species). These species are recognized as a cause of large ecological and economic losses. Nevertheless, the economic impacts of these species in urban areas are still poorly understood. Here we present a synthesis of the reported economic costs of invasive species in urban areas using the global InvaCost database, and demonstrate that costs are likely underestimated. Sixty-one invasive species have been reported to cause a cumulative cost of US$ 326.7 billion in urban areas between 1965 and 2021 globally (average annual cost of US$ 5.7 billion). Class Insecta was responsible for >99 % of reported costs (US$ 324.4 billion), followed by Aves (US$ 1.4 billion), and Magnoliopsida (US$ 494 million). The reported costs were highly uneven with the sum of the five costliest species representing 80 % of reported costs. Most reported costs were a result of damage (77.3 %), principally impacting public and social welfare (77.9 %) and authorities-stakeholders (20.7 %), and were almost entirely in terrestrial environments (99.9 %). We found costs reported for 24 countries. Yet, there are 73 additional countries with no reported costs, but with occurrences of invasive species that have reported costs in other countries. Although covering a relatively small area of the Earth's surface, urban areas represent about 15 % of the total reported costs attributed to invasive species. These results highlight the conservative nature of the estimates and impacts, revealing important biases present in the evaluation and publication of reported data on costs. We emphasize the urgent need for more focused assessments of invasive species' economic impacts in urban areas.


Subject(s)
Insecta , Introduced Species , Humans , Animals , Urbanization , Ecosystem
3.
Ecol Evol ; 12(2): e8590, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35222963

ABSTRACT

Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series, even more exciting results can be expected, especially about range shifts. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.

4.
Sci Rep ; 10(1): 12113, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32694547

ABSTRACT

Herbivores modulate the structure and composition of plant communities, including plant invasions. This is conditioned by plant palatability which can be reduced by its chemical or physical traits. The effects that ungulates browsing has on pine invasions are variable and the empirical evidence on the causes of this variability is scarce. We experimentally explored how sheep browsing preference varies between seedlings of pine species with different invasiveness; Pinus contorta (high invasiveness), P. ponderosa (medium invasiveness), P. radiata (medium invasiveness) and P. jeffreyi (low invasiveness). Secondly, we quantified anti-herbivory chemical compounds and physical traits of these species and related them with sheep preference observed. The browsing incidence of P. contorta was 68%, P. ponderosa 58%, P. radiata 29%, and P. jeffreyi 84%. Among anti-herbivory traits analyzed, α-pinene concentration had a negative effect on the probability of a terminal bud being browsed and on browsing intensity. Meanwhile, foliar toughness was negatively related to browsing intensity and water concentration was positively related to browsing intensity. Also, the most invasive species, P. contorta, was highly damaged. Thus, sheep herbivory could be slowing pine invasion rate; suggesting that could be considered a tool to control early invasions, especially for this particular species.


Subject(s)
Pinus/growth & development , Resins, Plant/chemistry , Sheep/physiology , Terpenes/chemistry , Animal Feed , Animals , Argentina , Herbivory , Introduced Species , Pinus/chemistry , Pinus/classification , Population Density
5.
Glob Chang Biol ; 26(11): 6616-6629, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32311220

ABSTRACT

Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.


Subject(s)
Ecosystem , Microclimate , Climate Change , Snow , Temperature
6.
Ecol Evol ; 5(14): 2878-89, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26306173

ABSTRACT

Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological impacts ascribed to invasive plants is surprisingly limited in both breadth and depth. Our aim was to propose a standard methodology for quantifying baseline ecological impact that, in theory, is scalable to any terrestrial plant invader (e.g., annual grasses to trees) and any invaded system (e.g., grassland to forest). The Global Invader Impact Network (GIIN) is a coordinated distributed experiment composed of an observational and manipulative methodology. The protocol consists of a series of plots located in (1) an invaded area; (2) an adjacent removal treatment within the invaded area; and (3) a spatially separate uninvaded area thought to be similar to pre-invasion conditions of the invaded area. A standardized and inexpensive suite of community, soil, and ecosystem metrics are collected allowing broad comparisons among measurements, populations, and species. The method allows for one-time comparisons and for long-term monitoring enabling one to derive information about change due to invasion over time. Invader removal plots will also allow for quantification of legacy effects and their return rates, which will be monitored for several years. GIIN uses a nested hierarchical scale approach encompassing multiple sites, regions, and continents. Currently, GIIN has network members in six countries, with new members encouraged. To date, study species include representatives of annual and perennial grasses; annual and perennial forbs; shrubs; and trees. The goal of the GIIN framework is to create a standard yet flexible platform for understanding the ecological impacts of invasive plants, allowing both individual and synthetic analyses across a range of taxa and ecosystems. If broadly adopted, this standard approach will offer unique insight into the ecological impacts of invasive plants at local, regional, and global scales.

7.
PLoS One ; 8(6): e66832, 2013.
Article in English | MEDLINE | ID: mdl-23826154

ABSTRACT

Biological invasions are often complex phenomena because many factors influence their outcome. One key aspect is how non-natives interact with the local biota. Interaction with local species may be especially important for exotic species that require an obligatory mutualist, such as Pinaceae species that need ectomycorrhizal (EM) fungi. EM fungi and seeds of Pinaceae disperse independently, so they may use different vectors. We studied the role of exotic mammals as dispersal agents of EM fungi on Isla Victoria, Argentina, where many Pinaceae species have been introduced. Only a few of these tree species have become invasive, and they are found in high densities only near plantations, partly because these Pinaceae trees lack proper EM fungi when their seeds land far from plantations. Native mammals (a dwarf deer and rodents) are rare around plantations and do not appear to play a role in these invasions. With greenhouse experiments using animal feces as inoculum, plus observational and molecular studies, we found that wild boar and deer, both non-native, are dispersing EM fungi. Approximately 30% of the Pinaceae seedlings growing with feces of wild boar and 15% of the seedlings growing with deer feces were colonized by non-native EM fungi. Seedlings growing in control pots were not colonized by EM fungi. We found a low diversity of fungi colonizing the seedlings, with the hypogeous Rhizopogon as the most abundant genus. Wild boar, a recent introduction to the island, appear to be the main animal dispersing the fungi and may be playing a key role in facilitating the invasion of pine trees and even triggering their spread. These results show that interactions among non-natives help explain pine invasions in our study area.


Subject(s)
Fungi/physiology , Introduced Species , Mammals/microbiology , Trees/microbiology , Animals , Colony Count, Microbial , Feces/microbiology , Fungi/growth & development , Host-Pathogen Interactions , Mice , Molecular Sequence Data , Pinus/microbiology , Plant Roots/microbiology , Seedlings/microbiology , Species Specificity
8.
Oecologia ; 170(3): 687-93, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22584583

ABSTRACT

Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is "invisible to natural selection" because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore's chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval foraging behavior and development compared to plant chemical defenses.


Subject(s)
Aristolochia/physiology , Aristolochic Acids/metabolism , Butterflies/physiology , Herbivory , Larva/physiology , Animals , Aristolochia/chemistry , Aristolochia/metabolism , Aristolochic Acids/analysis , Butterflies/genetics , Butterflies/metabolism , Genetic Variation , Plant Leaves/chemistry , Plant Leaves/physiology , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...