Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 14(5)2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38473093

ABSTRACT

The pervasive expansion of human-engineered infrastructure, particularly roads, has fundamentally reshaped landscapes, profoundly affecting wildlife interactions. Wildlife-vehicle collisions, a common consequence of this intricate interplay, frequently result in fatalities, extending their detrimental impact within Protected Areas (PAs). Among the faunal groups most susceptible to road mortality, reptiles and amphibians stand at the forefront, highlighting the urgent need for global comprehensive mitigation strategies. In Greece, where road infrastructure expansion has encroached upon a significant portion of the nation's PAs, the plight of these road-vulnerable species demands immediate attention. To address this critical issue, we present a multifaceted and holistic approach to investigating and assessing the complex phenomenon of herpetofauna road mortality within the unique ecological context of the Lake Karla plain, a rehabilitated wetland complex within a PA. To unravel the intricacies of herpetofauna road mortality in the Lake Karla plain, we conducted a comprehensive 12-year investigation from 2008 to 2019. Employing a combination of statistical modeling and spatial analysis techniques, we aimed to identify the species most susceptible to these encounters, their temporal and seasonal variations, and the ecological determinants of their roadkill patterns. We documented a total of 340 roadkill incidents involving 14 herpetofauna species in the Lake Karla's plain, with reptiles, particularly snakes, being more susceptible, accounting for over 60% of roadkill occurrences. Moreover, we found that environmental and road-related factors play a crucial role in influencing roadkill incidents, while spatial analysis techniques, including Kernel Density Estimation, the Getis-Ord Gi*, and the Kernel Density Estimation plus methods revealed critical areas, particularly in the south-eastern region of Lake Karla's plain, offering guidance for targeted interventions to address both individual and collective risks associated with roadkill incidents.

2.
Environ Pollut ; 341: 122874, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37949159

ABSTRACT

The industrial application and environmental release of nickel oxide NPs (NiO NPs) is increasing, but the details of their relationship with plants are largely unknown. In this work, the cellular, tissue, organ, and molecular level responses of three ecotypes of Ni hyperaccumulator Odontarrhena lesbiaca grown in the presence of high doses of NiO NP (250 mg/L and 500 mg/L) were studied. All three ecotypes showed a similar accumulation of Ni in the presence of nano Ni, and in the case of NiO NPs, the root-to-shoot Ni translocation was slighter compared to the bulk Ni. In all three ecotypes, the walls of the root cells effectively prevented internalization of NiO NPs, providing cellular defense against Ni overload. Exposure to NiO NP led to an increase in cortex thickness and the deposition of lignin-suberin and pectin in roots, serving as a tissue-level defense mechanism against excessive Ni. Exposure to NiO NP did not modify or cause a reduction in some biomass parameters of the Ampeliko and Loutra ecotypes, while it increased all parameters in Olympos. The free salt form of Ni exerted more negative effects on biomass production than the nanoform, and the observed effects of NiO NPs can be attributed to the release of Ni ions. Nitric oxide and peroxynitrite levels were modified by NiO NPs in an ecotype-dependent manner. The changes in the abundance and activity of S-nitrosoglutathione reductase protein triggered by NiO NPs suggest that the enzyme is regulated by NiO NPs at the post-translational level. The NiO NPs slightly intensified protein tyrosine nitration, and the slight differences between the ecotypes were correlated with their biomass production in the presence of NiO NPs. Overall, the Odontarrhena lesbiaca ecotypes exhibited tolerance to NiO NPs at the cellular, tissue, organ/organism and molecular levels, demonstrating various defense mechanisms and changes in the metabolism of reactive nitrogen species metabolism and nitrosative protein modification.


Subject(s)
Brassicaceae , Nanoparticles , Ecotype , Cell Wall
3.
Biology (Basel) ; 12(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37372120

ABSTRACT

Numerous studies have proved that biodiversity and ecosystem functioning (BEF) are closely linked [...].

4.
J Environ Manage ; 339: 117805, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37043912

ABSTRACT

As climate-related impacts threaten marine biodiversity globally, it is important to adjust conservation efforts to mitigate the effects of climate change. Translating scientific knowledge into practical management, however, is often complicated due to resource, economic and policy constraints, generating a knowledge-action gap. To develop potential solutions for marine turtle conservation, we explored the perceptions of key actors across 18 countries in the Mediterranean. These actors evaluated their perceived relative importance of 19 adaptation and mitigation measures that could safeguard marine turtles from climate change. Of importance, despite differences in expertise, experience and focal country, the perceptions of researchers and management practitioners largely converged with respect to prioritizing adaptation and mitigation measures. Climate change was considered to have the greatest impacts on offspring sex ratios and suitable nesting sites. The most viable adaptation/mitigation measures were considered to be reducing other pressures that act in parallel to climate change. Ecological effectiveness represented a key determinant for implementing proposed measures, followed by practical applicability, financial cost, and societal cost. This convergence in opinions across actors likely reflects long-standing initiatives in the Mediterranean region towards supporting knowledge exchange in marine turtle conservation. Our results provide important guidance on how to prioritize measures that incorporate climate change in decision-making processes related to the current and future management and protection of marine turtles at the ocean-basin scale, and could be used to guide decisions in other regions globally. Importantly, this study demonstrates a successful example of how interactive processes can be used to fill the knowledge-action gap between research and management.


Subject(s)
Ecosystem , Turtles , Animals , Conservation of Natural Resources/methods , Climate Change , Biodiversity
5.
Biology (Basel) ; 11(2)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35205172

ABSTRACT

Seasonality, rather than annual precipitation levels, is expected to affect the adaptive responses of plant populations under future climate change. To estimate adaptive traits' variation, we conducted a common garden experiment with two beech populations from contrasting climatic origins (Evros with longer drought intervals during summer and higher precipitation seasonality, and Drama representing a more temperate ecosystem). We simulated two different watering treatments (frequent vs. non-frequent) on beech seedlings, according to predicted monthly precipitation levels expected to prevail in 2050 by the CSIRO MK3.6 SRESA1B model, considering as reference area a natural beech stand in Mt. Rodopi, Greece. A series of morphological and stem anatomical traits were measured. Seedling survival was greater for the Evros population compared to that of Drama under non-frequent watering, while no difference in survival was detected under frequent watering. Leaf morphological traits were not generally affected by watering frequency except for leaf circularity, which was found to be lower under non-frequent watering for both populations. Stomata density in leaves was found to be higher in the Evros population and lower in the Drama population under non-frequent watering than frequent. Stem anatomical traits were higher under non-frequent watering for Evros but lower for the Drama population. Multivariate analyses clearly discriminated populations under non-frequent rather than frequent watering, indicating genetic adaptation to the population's environment of origin.

6.
Sci Total Environ ; 805: 150314, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34543797

ABSTRACT

Mediterranean islands are considered especially vulnerable to biological invasions by alien plants. However, there is a lack of studies on island scale regarding the factors that determine alien plant's spatial distribution, and the way they affect invasion process. A roadside survey of alien plant species was conducted on Lesvos, the 8th largest island in Mediterranean basin. Data on species counts and explanatory variables were aggregated to a 1 sq. km vector grid and brought together into a single GIS layer. Alien species counts were modelled by using a Negative-binomial model while a Generalised Additive Model was used to examine possible non-linear relationships to the predictors by using splines. A subset of significant factors, related both to human activities and the environment, shaped the spatial distribution of aliens and influenced, in various ways, their future invasion outcome. Transformed areas with high levels of anthropogenic pressures and disturbances, including high population numbers, dense road network, ports, and intensive land use, as is the case for coastal zones, promoted the presence of alien species. Contrary, modified areas, such as grazed lands, seemed to restrict alien species occurrences, possibly due to the long grazing history these areas present, a regime in which aliens are not adapted. Alien plants presence was positively associated with high levels of NPP, diversity of geological substrates, and a west-facing aspect. Anthropogenic determinants of alien spatial patterns were primarily connected to increased propagule pressure, whereas environmental factors demonstrated the preference of alien plants for resource-rich environments.


Subject(s)
Introduced Species , Plants , Adaptation, Physiological , Ecosystem , Humans , Mediterranean Islands
7.
Animals (Basel) ; 13(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36611634

ABSTRACT

One of the most successful predators on island ecosystems is the domestic cat, which is considered responsible for the decline of numerous species' populations. This can be estimated by the analysis of cats' dietary habits, yet prey identification is not always possible, and thus, in cases where precise prey identification is required, one of the most accurate methods derives from observing the hunting process. However, the cryptic nature of the feral cats and the constant vigilance of the species that are preyed upon make the observation process difficult, especially when the prey has a low population density. Here, we report for the first time such a case: a feral cat that has ambushed, killed, and consumed a regionally near-threatened species, the Persian squirrel. This incidental observation happened in the squirrel's westernmost end of its distribution, the island of Lesvos, Greece. Due to the unexpectedness of the event, in the following days, we estimated both the squirrels' and cats' population density. Results showed that while the density of the squirrels is moderate, the population density of the feral cats is almost fifteen times higher. For this reason, management actions need to be taken in an effort to minimize the impacts of feral cats on the native species of the island.

8.
Plants (Basel) ; 10(10)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34685922

ABSTRACT

Invasive alien plant species represent an important threat to various protected areas of the world, and this threat expected to be further enhanced due to climate change. This is also the case for the most important network of protected areas in Europe, the Natura 2000 network. In the current study we evaluated the distribution pattern of alien plant taxa across selected continental and insular Natura 2000 sites in Greece and their potential spread 15 years since first being recorded in the field. A total of seventy-three naturalized plant taxa were recorded in the 159 sites under study. At the site level and regardless of the habitat group, the ratio of invaded areas increased between the two monitoring campaigns. An increase in the ratio of invaded plots was also detected for all habitat groups, except for grassland and riparian-wetland habitats. Precipitation during the dry quarter of the year was the factor that mainly controlled the occurrence and spread of alien plant taxa regardless of the site and habitat group. It is reasonable to say that the characterization of an area as protected may not be sufficient without having implemented the proper practices for halting biological invasions.

9.
Conserv Lett ; 14(4): e12800, 2021.
Article in English | MEDLINE | ID: mdl-34230839

ABSTRACT

During the first wave of the COVID-19 pandemic, management authorities of numerous Protected Areas (PAs) had to discourage visitors from accessing them in order to reduce the virus transmission rate and protect local communities. This resulted in social-ecological impacts and added another layer of complexity to managing PAs. This paper presents the results of a survey in Snowdonia National Park capturing the views of over 700 local residents on the impacts of COVID-19 restrictions and possible scenarios and tools for managing tourist numbers. Lower visitor numbers were seen in a broadly positive way by a significant number of respondents while benefit sharing issues from tourism also emerged. Most preferred options to manage overcrowding were restricting access to certain paths, the development of mobile applications to alert people to overcrowding and reporting irresponsible behavior. Our findings are useful for PA managers and local communities currently developing post-COVID-19 recovery strategies.

10.
Plants (Basel) ; 10(4)2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33924181

ABSTRACT

The elemental defense hypothesis supports that metal hyperaccumulation in plant tissues serves as a mechanism underpinning plant resistance to herbivores and pathogens. In this study, we investigate the interaction between Odontarrhena lesbiaca and broomrape parasitic species, in the light of the defense hypothesis of metal hyperaccumulation. Plant and soil samples collected from three serpentine sites in Lesbos, Greece were analyzed for Ni concentrations. Phelipanche nowackiana and Phelipanche nana were found to infect O. lesbiaca. In both species, Ni concentration decreased gradually from tubercles to shoots and flowers. Specimens of both species with shoot nickel concentrations above 1000 mg.kg-1 were found, showing that they act as nickel hyperaccumulators. Low values of parasite to O. lesbiaca leaf or soil nickel quotients were observed. Orobanche pubescens growing on a serpentine habitat but not in association with O. lesbiaca had very low Ni concentrations in its tissues analogous to excluder plants growing on serpentine soils. Infected O. lesbiaca individuals showed lower leaf nickel concentrations relative to the non-infected ones. Elevated leaf nickel concentration of O. lesbiaca individuals did not prevent parasitic plants to attack them and to hyperaccumulate metals to their tissues, contrary to predictions of the elemental defense hypothesis.

12.
Environ Sci Policy ; 112: 134-140, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33343227

ABSTRACT

Effective designation of Protected Areas (PAs) requires the careful consideration of their social impacts as these are perceived by people. These refer to a variety of issues such as the distribution of power, social equity, social relations and more importantly the impact of PAs on human wellbeing. A number of studies have emerged in the past decade aiming to capture social impacts of PAs across the world through non-monetary assessments taking into consideration people's perceptions. Although Europe is the region with the largest in proportion number of Protected Areas across the world it is also a region with very limited scientific evidence on this topic. As the European Union is preparing to implement its new Biodiversity Strategyto ipkmplement this paper aims to provide the first comprehensive review of the literature regarding social impacts of European PAs and highlight new directions for current policy frameworks in the region. The paper focuses on the perceived non-economic social costs and benefits of PAs and identifies 7 key categories of social impacts. We propose that policy planning for biodiversity conservation in Europe should incorporate subjective assessments of social costs and benefits with the aim to achieve an increase of benefits for people and their equal distribution across social groups.

13.
Antioxidants (Basel) ; 9(9)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906835

ABSTRACT

Odontarrhena lesbiaca is an endemic species to the serpentine soils of Lesbos Island (Greece). As a nickel (Ni) hyperaccumulator, it possesses an exceptional Ni tolerance; and it can accumulate up to 0.2-2.4% Ni of its leaves' dry weight. In our study, O. lesbiaca seeds from two geographically separated study sites (Ampeliko and Loutra) were germinated and grown on control and Ni-containing (3000 mg/kg) soil in a rhizotron system. Ni excess induced significant Ni uptake and translocation in both O. lesbiaca ecotypes and affected their root architecture differently: plants from the Ampeliko site proved to be more tolerant; since their root growth was less inhibited compared to plants originated from the Loutra site. In the roots of the Ampeliko ecotype nitric oxide (NO) was being accumulated, while the degree of protein tyrosine nitration decreased; suggesting that NO in this case acts as a signaling molecule. Moreover, the detected decrease in protein tyrosine nitration may serve as an indicator of this ecotype's better relative tolerance compared to the more sensitive plants originated from Loutra. Results suggest that Ni hypertolerance and the ability of hyperaccumulation might be connected to the plants' capability of maintaining their nitrosative balance; yet, relatively little is known about the relationship between excess Ni, tolerance mechanisms and the balance of reactive nitrogen species in plants so far.

14.
Sci Total Environ ; 747: 141197, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-32777499

ABSTRACT

Hyperaccumulation describes plants' ability to take up high amounts of soil metals such as Ni and allocate them to aboveground tissues. Little is known, however, about the rate at which Ni is allocated to different plant parts, or about the consumers related to these parts, including their pollinator mutualists. In this study, we examine the interface between the serpentine endemic Ni-hyperaccumulator Odontarrhena lesbiaca and its consumers of different plant parts: leaves (consumers), floral parts (consumers and primitive pollinators), and floral rewards (true pollinators). The study was conducted at two serpentine areas on Lesvos, Greece. Over 13 rounds of sampling during the flowering period of O. lesbiaca in both areas we collected plant stems with flowers, consumers of different plant parts, and flower visitors. Collected animals were mainly insects and some spiders. Chemical analyses showed negligible Ni-concentration differences between the two areas. Among all plant parts, the lowest Ni concentration was found in pollen and the highest in leaves. Regarding animal dietary habits, folivores accumulated the highest Ni concentrations, therefore characterized as "high-Ni insects", while floral-reward consumers, both primary (bees) and secondary (Eristalis tenax, Pygopleurus spp., and wasps), bore low Ni loads. Ni-body load of predators that fed on animals that were passing by was also low. Among floral-reward consumers, short-range fliers (bees of the genera Andrena and Lasioglossum) accumulated higher Ni loads than long-range fliers (Apis mellifera, Bombus terrestris, Eristalis tenax). Solitary Andrena bees accumulated higher Ni concentration than eusocial honeybees (Apis mellifera) and bumblebees (Bombus terrestris); a group of Lasioglossum specimens encompassing both solitary and eusocial bees lay in between. Our results show that diet, foraging distance, and sociality are important factors for Ni transferred into consumers and mutualists, mostly insects that are directly associated with different plant parts of O. lesbiaca.


Subject(s)
Brassicaceae , Nickel , Animals , Bees , Bioaccumulation , Flowers , Greece , Humans , Pollination
15.
Sci Total Environ ; 718: 137437, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32325621

ABSTRACT

Fire affects and is affected by leaf functional traits indicative of resource allocation trade-offs. Global change drivers constrain both the resource-use strategies and flammability of coexisting species. However, small attention has been given in identifying links among flammability and plant economics. Ambiguity comes from the fact that flammability is a multidimensional trait. Different flammability attributes (i.e. ignitibility, sustainability, combustibility and consumability) have been used to classify species, but no widely-accepted relationships exist between attributes. We hypothesised that flammability is a spectrum (defined by its four attributes) and the alternative flammability syndromes of coexisting species can be captured by their resource-use strategies. Furthermore, we argue that flammability syndromes are adaptive strategies that ensure persistence in the post-fire community. We conducted a large-scale study to estimate all flammability attributes on leaves from nine, dominant, thermo-Mediterranean species with alternative resource-use and fire-response strategies across a wide environmental and geographic gradient. We assessed the interdependence among attributes, and their variation across ecological scales (genus, species, individual, site and region). Furthermore, we collected 10 leaf functional traits, conducted a soil study and extracted long-term climatological data to quantify their effect on flammability attributes. We found that leaf flammability in thermo-Mediterranean vegetation is a continuous two-dimensional spectrum. The first dimension, driven by leaf shape and size, represents heat release rate (combustibility vs. sustainability), while the second, controlled by leaf economics, presents ignition delay and total heat release (i.e. consumability). Alternative flammability syndromes can increase fitness in fire-prone communities by offering qualitative differences in survival or reproduction. Trade-offs and constraints that control the distribution of resource-use strategies across environmental gradients appeared to drive leaf flammability syndromes as well. Tying the flammability spectrum with resource allocation trade-offs on a global scale can help us predict future ecosystem properties and fire regimes and illustrate evolutionary constraints on flammability.


Subject(s)
Fires , Ecosystem , Plant Leaves , Soil
16.
Front Plant Sci ; 11: 212, 2020.
Article in English | MEDLINE | ID: mdl-32194599

ABSTRACT

Plant structural and biochemical traits are frequently used to characterise the life history of plants. Although some common patterns of trait covariation have been identified, recent studies suggest these patterns of covariation may differ with growing location and/or plant functional type (PFT). Mediterranean forest tree/shrub species are often divided into three PFTs based on their leaf habit and form, being classified as either needleleaf evergreen (Ne), broadleaf evergreen (Be), or broadleaf deciduous (Bd). Working across 61 mountainous Mediterranean forest sites of contrasting climate and soil type, we sampled and analysed 626 individuals in order to evaluate differences in key foliage trait covariation as modulated by growing conditions both within and between the Ne, Be, and Bd functional types. We found significant differences between PFTs for most traits. When considered across PFTs and by ignoring intraspecific variation, three independent functional dimensions supporting the Leaf-Height-Seed framework were identified. Some traits illustrated a common scaling relationship across and within PFTs, but others scaled differently when considered across PFTs or even within PFTs. For most traits much of the observed variation was attributable to PFT identity and not to growing location, although for some traits there was a strong environmental component and considerable intraspecific and residual variation. Nevertheless, environmental conditions as related to water availability during the dry season and to a smaller extend to soil nutrient status and soil texture, clearly influenced trait values. When compared across species, about half of the trait-environment relationships were species-specific. Our study highlights the importance of the ecological scale within which trait covariation is considered and suggests that at regional to local scales, common trait-by-trait scaling relationships should be treated with caution. PFT definitions by themselves can potentially be an important predictor variable when inferring one trait from another. These findings have important implications for local scale dynamic vegetation models.

17.
Sci Total Environ ; 672: 583-592, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30965269

ABSTRACT

Vascular plants have been found to align along globally-recognised resource-allocation trade-offs among specific functional traits. Genetic constrains and environmental pressures limit the spectrum of viable resource-use strategies employed by plant species. While conspecific plants have often been described as identical, intraspecific variation facilitates species coexistence and evolutionary potential. This study attempts to link an individual's phenotype to its environmental tolerance and ecosystem function. We hypothesised that: (1) seasonal variation in water availability has selected for tight phenotypic integration patterns that shape Mediterranean vegetation; however, (2) coexisting species employ alternative resource-use strategies to avoid competitive exclusion; specifically (3) species with smaller climatic niches (i.e. potential distributions) display higher functional diversity. We examined the interdependence among and the sources of variation within 11 functional traits, reflecting whole-plant economics (e.g. construction costs, hydraulics, defences, water storage capacity), from nine dominant, thermo-Mediterranean species measured across a wide environmental and geographic gradient. Furthermore, we delineated the phenotypic and climatic hypervolumes of each studied species to test for climatic niche overlap and functional distinctiveness. By adopting this multidimensional trait-based approach we detected fundamental phenotypic integration patterns that define thermo-Mediterranean species regardless of life history strategy. The studied traits emerged intercorrelated shaping a resource-allocation spectrum. Significant intraspecific variability in most measured traits allowed for functional distinctiveness among the measured species. Higher functional diversity was observed in species restricted within narrower climatic niches. Our results support our initial hypotheses. The studied functional traits collectively formed an integrated space of viable phenotypic expressions; however, phenotypic plasticity enables functionally distinctive species to succeed complementary in a given set of environmental conditions. Functional variability among coexisting individuals defined species' climatic niches within the trait-spectrum permitted by Mediterranean conditions. Ultimately, a species establishment in a locality depends on the extent that it can shift its trait values.


Subject(s)
Ecosystem , Environmental Monitoring , Phenotype , Plants/classification , Biodiversity , Climate , Mediterranean Region , Nitrogen , Plant Leaves , Plants/anatomy & histology , Seasons , Soil , Species Specificity
18.
PeerJ ; 6: e5066, 2018.
Article in English | MEDLINE | ID: mdl-29942703

ABSTRACT

BACKGROUND: Underwater visual surveys (UVSs) for monitoring fish communities are preferred over fishing surveys in certain habitats, such as rocky or coral reefs and seagrass beds and are the standard monitoring tool in many cases, especially in protected areas. However, despite their wide application there are potential biases, mainly due to imperfect detectability and the behavioral responses of fish to the observers. METHODS: The performance of two methods of UVSs were compared to test whether they give similar results in terms of fish population density, occupancy, species richness, and community composition. Distance sampling (line transects) and plot sampling (strip transects) were conducted at 31 rocky reef sites in the Aegean Sea (Greece) using SCUBA diving. RESULTS: Line transects generated significantly higher values of occupancy, species richness, and total fish density compared to strip transects. For most species, density estimates differed significantly between the two sampling methods. For secretive species and species avoiding the observers, the line transect method yielded higher estimates, as it accounted for imperfect detectability and utilized a larger survey area compared to the strip transect method. On the other hand, large-scale spatial patterns of species composition were similar for both methods. DISCUSSION: Overall, both methods presented a number of advantages and limitations, which should be considered in survey design. Line transects appear to be more suitable for surveying secretive species, while strip transects should be preferred at high fish densities and for species of high mobility.

19.
Oecologia ; 186(3): 755-764, 2018 03.
Article in English | MEDLINE | ID: mdl-29299673

ABSTRACT

Fluctuations in nutrient ratios over seasonal scales in aquatic ecosystems can result in overyielding, a condition arising when complementary life-history traits of coexisting phytoplankton species enables more complete use of resources. However, when nutrient concentrations fluctuate under short-period pulsed resource supply, the role of complementarity is less understood. We explore this using the framework of Resource Saturation Limitation Theory (r-strategists vs. K-strategists) to interpret findings from laboratory experiments. For these experiments, we isolated dominant species from a natural assemblage, stabilized to a state of coexistence in the laboratory and determined life-history traits for each species, important to categorize its competition strategy. Then, using monocultures we determined maximum biomass density under pulsed resource supply. These same conditions of resource supply were used with polycultures comprised of combinations of the isolated species. Our focal species were consistent of either r- or K-strategies and the biomass production achieved in monocultures depended on their efficiency to convert resources to biomass. For these species, the K-strategists were less efficient resource users. This affected biomass production in polycultures, which were characteristic of underyielding. In polycultures, K-strategists sequestered more resources than the r-strategists. This likely occurred because the intermittent periods of nutrient limitation that would have occurred just prior to the next nutrient supply pulse would have favored the K-strategists, leading to overall less efficient use of resources by the polyculture. This study provides evidence that fluctuation in resource concentrations resulting from pulsed resource supplies in aquatic ecosystems can result in phytoplankton assemblages' underyielding.


Subject(s)
Ecosystem , Phytoplankton , Biomass
20.
Sci Total Environ ; 601-602: 461-468, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28575824

ABSTRACT

This paper aims to determine the main factors that shape the spatial patterns of alien plant species occurrence across Natura 2000 Special Areas of Conservation (SACs) in Greece, and quantify their influence. A series of spatial analysis techniques for the development of a spatial database of the factors involved, followed by a boosted negative binomial Generalised Additive Model for location scale and shape, were implemented. Native plant species richness, topography and hydrography, human population density, and a spatial preference to the northern-western sites are the key factors that explain the variation in the occurrence of alien plant species. Native plant species richness and human population density have a positive effect on alien plant species presence, while topography aspects, such as elevation and slope, and the distance from the hydrographical network a negative one. All factors are indirectly linked to propagule pressure emphasizing the importance of human activities for the efforts on managing protected areas.


Subject(s)
Biodiversity , Conservation of Natural Resources , Ecosystem , Introduced Species , Plants , Environmental Monitoring , Greece , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...