Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Discov Oncol ; 14(1): 25, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36820928

ABSTRACT

PURPOSE: Cancer cells require a supply of amino acids, particularly essential amino acids such as branched-chain amino acids (BCAAs, i.e., valine, leucine, and isoleucine), to meet the increased nutrient demands of malignant tumors. The cell-autonomous and non-autonomous roles of altered BCAA supply have been implicated in cancer progression. The critical proteins involved in BCAA uptake, transport, metabolism, etc. serve as potential therapeutic biomarkers in human cancers. Here, we summarize the potential anti-tumor mechanism of BCAA by exploring the chain reaction triggered by increased BCAA supply in the tumor. METHOD: A system-wide strategy was employed to provide a generic solution to establish the links between BCAA and cancer based on comprehensive omics, molecular experimentation, and data analysis. RESULTS: BCAA over-supplementation (900 mg/kg) significantly inhibited tumor growth and reduced tumor burden, with isoleucine having the most pronounced effect. Surprisingly, isoleucine inhibited tumor growth independently of mTORC1 activation, a classical amino acid sensor. Exploratory transcriptome analysis revealed that Phosphatase and tensin homolog (PTEN) is the critical factor in the anti-tumor effect of isoleucine. By inhibiting PTEN ubiquitination, isoleucine can promote PTEN nuclear import and maintain PTEN nuclear stability. Interestingly, this process was regulated by isoleucine-tRNA ligase, cytoplasmic (IARS), a direct target of isoleucine. We demonstrated the enhanced interaction between IARS and PTEN in the presence of excess isoleucine. At the same time, IARS knockout leads to loss of isoleucine tumor suppressor ability. CONCLUSION: Overall, our results provide insights into the regulation of the IARS-PTEN anti-tumor axis by isoleucine and reveal a unique therapeutic approach based on enhancing cellular isoleucine supply.

2.
Bioorg Med Chem ; 64: 116724, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35468537

ABSTRACT

Quinolizidine alkaloids, as essential active ingredients extracted from Sophora alopecuroides Linn (SAL), have been proven to be pharmacologically active in a variety of cancers including non-small cell lung cancer (NSCLC). However, whether these alkaloids have substantial benefits in combination with immune checkpoint blockade (ICB) for the treatment of NSCLC is unknown. Here, we explore the potential of these alkaloids in combination with ICB therapy based on a systems pharmacology and bioinformatics approach. We found that 37 alkaloids in SAL have highly similar characteristics in the molecular skeleton, pharmacological properties, and targets. The expression of targets of these alkaloids are significantly correlated with the infiltration level of tumor infiltrating lymphocytes and the expression levels of multiple immune checkpoints in NSCLC. They share similar molecular mechanisms in antitumor immunity. Sophocarpine (Sop) is one of the most representative constituents of these alkaloids. We demonstrated that the Sop promotes PD-L1 expression to improve the effects of PD-L1 blockade treatment via the ADORA1-ATF3 axis. In conclusion, our study identified these alkaloids as promising candidates for the treatment of NSCLC, either alone or in combination with ICB, with potential value for drug development and may provide a promising strategy for improving the survival of NSCLC patients.


Subject(s)
Alkaloids , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Sophora , Alkaloids/pharmacology , Alkaloids/therapeutic use , B7-H1 Antigen , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immune Checkpoint Inhibitors , Lung Neoplasms/drug therapy , Network Pharmacology
3.
J Ethnopharmacol ; 291: 115106, 2022 Jun 12.
Article in English | MEDLINE | ID: mdl-35181485

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cardiac hypertrophy (CH) is an incurable heart disease, contributing to an increased risk of heart failure due to the lack of safe and effective strategies. Therefore, searching for new approaches to treat CH is urgent. Centella asiatica (L.) Urb. (CA), a traditional food and medicinal natural plant, has been turned out to be effective in the treatment of cardiovascular disease, but its efficacy and potential mechanisms in alleviating CH have not yet been investigated. AIM OF STUDY: In this study, we aimed to elucidate the multi-level mechanisms underlying the effect of CA against CH. STUDY DESIGN AND METHODS: A systems pharmacology approach was employed to screen active ingredients, identify potential targets, construct visual networks and systematically investigate the pathways and mechanisms of CA for CH treatment. The cardiac therapeutic potential and mechanism of action of CA on CH were verified with in vivo and in vitro experiments. RESULTS: Firstly, we demonstrated the therapeutic effect of CA on CH and then screened 13 active compounds of CA according to the pharmacokinetic properties. Then, asiatic acid (AA) was identified as the major active molecule of CA for CH treatment. Afterwards, network and functional enrichment analyses showed that CA exerted cardioprotective effects by modulating multiple pathways mainly involved in anti-apoptotic, antioxidant and anti-inflammatory processes. Finally, in vivo, the therapeutic effects of AA and its action on the YAP/PI3K/AKT axis and NF-κB signaling pathway were validated using an isoproterenol-induced CH mouse model. In vitro, AA decreased ROS levels in hydrogen peroxide-treated HL-1 cells. CONCLUSION: Overall, the multi-level mechanisms of CA for CH treatment were demonstrated by systems pharmacology approach, which provides a paradigm for systematically deciphering the mechanisms of action of natural plants in the treatment of diseases and offers a new idea for the development of medicinal and food products.


Subject(s)
Centella , Animals , Cardiomegaly/drug therapy , Mice , Network Pharmacology , Phosphatidylinositol 3-Kinases , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
4.
Front Oncol ; 11: 790912, 2021.
Article in English | MEDLINE | ID: mdl-35141150

ABSTRACT

The F-box protein 22 (FBXO22), an F-box E3 ligase, has been identified to be critically involved in carcinogenesis. However, a systematic assessment of the role of FBXO22 across human cancers is lacking. Here, we performed a pan-cancer analysis to explore the role of FBXO22 in 33 cancer types using multiomic data from The Cancer Genome Atlas (TCGA). First, we found that high FBXO22 expression in multiple cancers was closely associated with poor overall survival and relapse-free survival. Next, we identified ten proteins that interact with FBXO22 and 13 of its target substrates using the STRING database and a literature search to explore the regulatory role of FBXO22 in tumorigenesis. Genes encoding these proteins were found to be significantly enriched in cell cycle negative regulation and ubiquitination pathways. This was confirmed in nonsmall cell lung cancer A549 cells, where FBXO22 overexpression enhanced cyclin-dependent kinase 4 (CDK4) protein levels and promoted cell proliferation. Similarly, overexpression or interference of FBXO22 changed the protein level of one of its substrates, PTEN. Additionally, we found that FBXO22 mutations were accompanied by altered substrate expression, especially in uterine corpus endometrial carcinoma and lung adenocarcinoma; endometrial carcinoma patients with FBXO22 genetic alterations also had better overall and relapse-free survival. Notably, FBXO22 methylation levels were also decreased in most tumors, and hypomethylation of FBXO22 was associated with poor overall survival, relapse-free interval, and progression-free interval in pancreatic adenocarcinoma. Finally, we analyzed the correlation between the abundance of tumor infiltrating lymphocytes (TILs) and FBXO22 expression, copy number variation, and methylation. Multiple algorithms revealed that high FBXO22 expression was associated with lower TIL levels, especially in lung adenocarcinoma, lung squamous cell carcinoma, and sarcoma. Taken together, our findings demonstrate that FBXO22 degrades tumor suppressor genes by ubiquitination and inhibits the cell cycle to promote nonsmall cell lung cancer progression. Our study also provides a relatively comprehensive understanding of the oncogenic role of FBXO22 in different tumors.

SELECTION OF CITATIONS
SEARCH DETAIL
...