Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
2.
J Proteome Res ; 23(4): 1272-1284, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38470452

ABSTRACT

Gestational diabetes mellitus (GDM) with intrauterine hyperglycemia induces a series of changes in the placenta, which have adverse effects on both the mother and the fetus. The aim of this study was to investigate the changes in the placenta in GDM and its gender differences. In this study, we established an intrauterine hyperglycemia model using ICR mice. We collected placental specimens from mice before birth for histological observation, along with tandem mass tag (TMT)-labeled proteomic analysis, which was stratified by sex. When the analysis was not segregated by sex, the GDM group showed 208 upregulated and 225 downregulated proteins in the placenta, primarily within the extracellular matrix and mitochondria. Altered biological processes included cholesterol metabolism and oxidative stress responses. After stratification by sex, the male subgroup showed a heightened tendency for immune-related pathway alterations, whereas the female subgroup manifested changes in branched-chain amino acid metabolism. Our study suggests that the observed sex differences in placental protein expression may explain the differential impact of GDM on offspring.


Subject(s)
Diabetes, Gestational , Hyperglycemia , Humans , Pregnancy , Female , Male , Mice , Animals , Placenta/metabolism , Proteomics , Mice, Inbred ICR , Diabetes, Gestational/genetics , Diabetes, Gestational/metabolism , Hyperglycemia/genetics
3.
iScience ; 27(2): 108522, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38313057

ABSTRACT

Small nucleolar RNA host genes (SNHGs) have been implicated in various biological processes, yet their involvement in polycystic ovary syndrome (PCOS) remains elusive. Specifically, SNHG5, a long non-coding RNA implicated in several human cancers, shows elevated expression in granulosa cells (GCs) of PCOS women and induces PCOS-like features when overexpressed in mice. In vitro, SNHG5 inhibits GC proliferation and induces apoptosis and cell-cycle arrest at G0/G1 phase, with RNA-seq indicating its impact on DNA replication and repair pathways. Mechanistically, SNHG5 acts as a competing endogenous RNA by binding to miR-92a-3p, leading to increased expression of target gene CDKN1C, which further suppresses GC proliferation and promotes apoptosis. These findings elucidate the crucial role of SNHG5 in the pathogenesis of PCOS and suggest a potential therapeutic target for this condition. Additional investigations such as large-scale clinical studies and functional assays are warranted to validate and expand upon these findings.

4.
Reprod Sci ; 31(4): 1017-1027, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37815748

ABSTRACT

Accumulating evidence has shown that inflammation is a key process in polycystic ovary syndrome (PCOS). Nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasomes play an essential role in inflammation. We investigated the expression of NLRP3 inflammasome in PCOS and its underlying mechanisms. Human granulosa cells (GCs) were isolated from patients with PCOS and control women who underwent in vitro fertilization and embryo transfer. Ovarian specimens were collected from mice with polycystic ovarian changes induced by a high-fat diet and letrozole. RNA sequencing (RNA-Seq) was performed on a granulosa cell line (KGN) overexpressing NLRP3. Polymerase chain reaction (PCR) was performed to quantify the differentially expressed genes of interest. NLRP3 and caspase-1 expression was significantly higher in GCs from patients with PCOS than in GCs from the control group. Increased NLRP3 and caspase-1 expression was also detected by immunohistochemistry in the GCs of a mouse model of polycystic ovarian changes. The serum IL-18 concentration in PCOS-like mice was significantly higher than that in control mice. Following NLRP3 overexpression in KGN cells, the genes involved in N-glycan processing, steroidogenesis, oocyte maturation, autophagy, and apoptosis were upregulated. The RT-qPCR results revealed that the expression levels of GANAB, ALG-5, HSD3B2, ULK1, PTK2B, and Casp7 in KGN cells after NLRP3 overexpression were significantly higher than those in control cells, which was consistent with the RNA-Seq results. Taken together, the NLRP3 inflammasome-dependent pathway is involved in the pathogenesis of PCOS not only by mediating pyroptosis, but also by regulating glycan synthesis, sex hormone synthesis, autophagy, and apoptosis in GCs.


Subject(s)
Inflammasomes , Polycystic Ovary Syndrome , Animals , Female , Humans , Mice , Caspases/metabolism , Granulosa Cells/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polycystic Ovary Syndrome/metabolism , Polysaccharides/metabolism
5.
Nat Commun ; 14(1): 6991, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37914684

ABSTRACT

Follicle-stimulating hormone (FSH) is involved in mammalian reproduction via binding to FSH receptor (FSHR). However, several studies have found that FSH and FSHR play important roles in extragonadal tissue. Here, we identified the expression of FSHR in human and mouse pancreatic islet ß-cells. Blocking FSH signaling by Fshr knock-out led to impaired glucose tolerance owing to decreased insulin secretion, while high FSH levels caused insufficient insulin secretion as well. In vitro, we found that FSH orchestrated glucose-stimulated insulin secretion (GSIS) in a bell curve manner. Mechanistically, FSH primarily activates Gαs via FSHR, promoting the cAMP/protein kinase A (PKA) and calcium pathways to stimulate GSIS, whereas high FSH levels could activate Gαi to inhibit the cAMP/PKA pathway and the amplified effect on GSIS. Our results reveal the role of FSH in regulating pancreatic islet insulin secretion and provide avenues for future clinical investigation and therapeutic strategies for postmenopausal diabetes.


Subject(s)
Follicle Stimulating Hormone , Islets of Langerhans , Mice , Animals , Humans , Follicle Stimulating Hormone/pharmacology , Follicle Stimulating Hormone/metabolism , Insulin Secretion , Glucose/pharmacology , Glucose/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Islets of Langerhans/metabolism , Signal Transduction , Insulin/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Mammals/metabolism
6.
Cell Biosci ; 13(1): 165, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37691128

ABSTRACT

BACKGROUND: Gene-environment interactions contribute to metabolic disorders such as diabetes and dyslipidemia. In addition to affecting metabolic homeostasis directly, drugs and environmental chemicals can cause persistent alterations in metabolic portfolios across generations in a sex-specific manner. Here, we use inorganic arsenic (iAs) as a prototype drug and chemical to dissect such sex differences. METHODS: After weaning, C57BL/6 WT male mice were treated with 250 ppb iAs in drinking water (iAsF0) or normal water (conF0) for 6 weeks and then bred with 15-week-old, non-exposed females for 3 days in cages with only normal water (without iAs), to generate iAsF1 or conF1 mice, respectively. F0 females and all F1 mice drank normal water without iAs all the time. RESULTS: We find that exposure of male mice to 250 ppb iAs leads to glucose intolerance and insulin resistance in F1 female offspring (iAsF1-F), with almost no change in blood lipid profiles. In contrast, F1 males (iAsF1-M) show lower liver and blood triglyceride levels than non-exposed control, with improved glucose tolerance and insulin sensitivity. The liver of F1 offspring shows sex-specific transcriptomic changes, with hepatocyte-autonomous alternations of metabolic fluxes in line with the sex-specific phenotypes. The iAsF1-F mice show altered levels of circulating estrogen and follicle-stimulating hormone. Ovariectomy or liver-specific knockout of estrogen receptor α/ß made F1 females resemble F1 males in their metabolic responses to paternal iAs exposure. CONCLUSIONS: These results demonstrate that disrupted reproductive hormone secretion in alliance with hepatic estrogen signaling accounts for the sex-specific intergenerational effects of paternal iAs exposure, which shed light on the sex disparities in long-term gene-environment interactions.

7.
Nutrients ; 15(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37571325

ABSTRACT

The developmental origin of health and disease (DOHaD) hypothesis refers to the adverse effects of suboptimal developmental environments during embryonic and early fetal stages on the long-term health of offspring. Intrauterine metabolic perturbations can profoundly impact organogenesis in offspring, particularly affecting cardiac development and giving rise to potential structural and functional abnormalities. In this discussion, we contemplate the existing understanding regarding the impact of maternal metabolic disorders, such as obesity, diabetes, or undernutrition, on the developmental and functional aspects of the offspring's heart. This influence has the potential to contribute to the susceptibility of offspring to cardiovascular health issues. Alteration in the nutritional milieu can influence mitochondrial function in the developing hearts of offspring, while also serving as signaling molecules that directly modulate gene expression. Moreover, metabolic disorders can exert influence on cardiac development-related genes epigenetically through DNA methylation, levels of histone modifications, microRNA expression, and other factors. However, the comprehensive understanding of the mechanistic underpinnings of these phenomena remains incomplete. Further investigations in this domain hold profound clinical significance, as they can contribute to the enhancement of public health and the prevention of cardiovascular diseases.


Subject(s)
Malnutrition , Metabolic Diseases , Prenatal Exposure Delayed Effects , Humans , Female , Obesity/metabolism , Malnutrition/complications , Heart , DNA Methylation , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects/metabolism
8.
J Diabetes ; 15(7): 569-582, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37190864

ABSTRACT

Mounting epidemiological evidence indicates that environmental exposures in early life have roles in diabetes susceptibility in later life. Additionally, environmentally induced diabetic susceptibility could be transmitted to subsequent generations. Epigenetic modifications provide a potential association with the environmental factors and altered gene expression that might cause disease phenotypes. Here, we bring the increasing evidence that environmental exposures early in development are linked to diabetes through epigenetic modifications. This review first summarizes the epigenetic targets, including metastable epialleles and imprinting genes, by which the environmental factors can modify the epigenome. Then we review the epigenetics changes in response to environmental challenge during critical developmental windows, gametogenesis, embryogenesis, and fetal and postnatal period, with the specific example of diabetic susceptibility. Although the mechanisms are still largely unknown, especially in humans, the new research methods are now gradually available, and the animal models can provide more in-depth study of mechanisms. These have implications for investigating the link of the phenomena to human diabetes, providing a new perspective on environmentally triggered diabetes risk.


Subject(s)
Diabetes Mellitus, Type 2 , Epigenomics , Animals , Humans , Epigenomics/methods , Epigenesis, Genetic , Environmental Exposure/adverse effects , Diabetes Mellitus, Type 2/genetics , Phenotype
9.
Front Endocrinol (Lausanne) ; 13: 1032705, 2022.
Article in English | MEDLINE | ID: mdl-36518243

ABSTRACT

Introduction: The prevalence of Gestational Diabetes Mellitus (GDM) is increasing globally, and high levels of triglyceride (TG) and low levels of free thyroxine (FT4) in early pregnancy are associated with an increased risk of GDM; however, the interaction and mediation effects remain unknown. The aim of the present study is to examine the impact of FT4 and TG combined effects on the prevalence of GDM and the corresponding casual paths among women in early pregnancy. Materials and methods: This study comprised 40,156 pregnant women for whom early pregnancy thyroid hormones, fasting blood glucose as well as triglyceride were available. GDM was diagnosed using a 2-hour 75-g oral glucose tolerance test (OGTT) according to the American Diabetes Association guidelines, and the pregnant women were grouped and compared according to the results. Results: An L-shaped association between FT4 and GDM was observed. The prevalence of GDM increased with increasing TG levels. After accounting for multiple covariables, the highest risk for GDM was found among pregnant women of lower FT4 with the highest TG concentrations (odds ratio, 2.44, 95% CI, 2.14 to 2.80; P<0.001) compared with mothers of higher FT4 with the TG levels in the lowest quartile (Q1). There was a significant interaction effect of maternal FT4 and TG levels on the risk for GDM (P for interaction = 0.036). The estimated proportion of the mediating effect of maternal TG levels was 21.3% (95% CI, 15.6% to 36.0%; P < 0.001). In the sensitivity analysis, the mediating effect of TG levels was stable across subgroups. Conclusion: This study demonstrated an L-shaped association between maternal FT4 levels and GDM and the benefit of low TG levels, in which maternal TG levels act as an important mediator in this association. Our findings suggested that pregnant women who treat hypothyroidism should also reduce triglycerides levels in early pregnancy to prevent GDM development.


Subject(s)
Diabetes, Gestational , Female , Pregnancy , Humans , Triglycerides , Thyroid Gland , Glucose Tolerance Test , Pregnancy Trimester, First
11.
Nature ; 605(7911): 761-766, 2022 05.
Article in English | MEDLINE | ID: mdl-35585240

ABSTRACT

Diabetes mellitus is prevalent among women of reproductive age, and many women are left undiagnosed or untreated1. Gestational diabetes has profound and enduring effects on the long-term health of the offspring2,3. However, the link between pregestational diabetes and disease risk into adulthood in the next generation has not been sufficiently investigated. Here we show that pregestational hyperglycaemia renders the offspring more vulnerable to glucose intolerance. The expression of TET3 dioxygenase, responsible for 5-methylcytosine oxidation and DNA demethylation in the zygote4, is reduced in oocytes from a mouse model of hyperglycaemia (HG mice) and humans with diabetes. Insufficient demethylation by oocyte TET3 contributes to hypermethylation at the paternal alleles of several insulin secretion genes, including the glucokinase gene (Gck), that persists from zygote to adult, promoting impaired glucose homeostasis largely owing to the defect in glucose-stimulated insulin secretion. Consistent with these findings, mouse progenies derived from the oocytes of maternal heterozygous and homozygous Tet3 deletion display glucose intolerance and epigenetic abnormalities similar to those from the oocytes of HG mice. Moreover, the expression of exogenous Tet3 mRNA in oocytes from HG mice ameliorates the maternal effect in offspring. Thus, our observations suggest an environment-sensitive window in oocyte development that confers predisposition to glucose intolerance in the next generation through TET3 insufficiency rather than through a direct perturbation of the oocyte epigenome. This finding suggests a potential benefit of pre-conception interventions in mothers to protect the health of offspring.


Subject(s)
Dioxygenases , Glucose Intolerance , Hyperglycemia , Oocytes , Adult , Animals , Dioxygenases/metabolism , Female , Glucose/metabolism , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Humans , Hyperglycemia/complications , Hyperglycemia/genetics , Hyperglycemia/metabolism , Maternal Inheritance , Mice , Oocytes/metabolism
12.
Biol Reprod ; 107(1): 196-204, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35323884

ABSTRACT

In recent years, the developmental origins of diseases have been increasingly recognized and accepted. As such, it has been suggested that most adulthood chronic diseases such as diabetes, obesity, cardiovascular disease, and even tumors may develop at a very early stage. In addition to intrauterine environmental exposure, germ cells carry an important inheritance role as the primary link between the two generations. Adverse external influences during differentiation and development can cause damage to germ cells, which may then increase the risk of chronic disease development later in life. Here, we further elucidate and clarify the concept of gamete and embryo origins of adult diseases by focusing on the environmental insults on germ cells, from differentiation to maturation and fertilization.


Subject(s)
Epigenesis, Genetic , Germ Cells , Adult , Cell Differentiation , DNA Methylation , Germ Cells/metabolism , Humans , Inheritance Patterns , Obesity/metabolism
13.
Front Cell Dev Biol ; 10: 748862, 2022.
Article in English | MEDLINE | ID: mdl-35237591

ABSTRACT

Growing evidence suggests that adverse intrauterine environments could affect the long-term health of offspring. Recent evidence indicates that gestational diabetes mellitus (GDM) is associated with neurocognitive changes in offspring. However, the mechanism remains unclear. Using a GDM mouse model, we collected hippocampi, the structure critical to cognitive processes, for electron microscopy, methylome and transcriptome analyses. Reduced representation bisulfite sequencing (RRBS) and RNA-seq in the GDM fetal hippocampi showed altered methylated modification and differentially expressed genes enriched in common pathways involved in neural synapse organization and signal transmission. We further collected fetal mice brains for metabolome analysis and found that in GDM fetal brains, the metabolites displayed significant changes, in addition to directly inducing cognitive dysfunction, some of which are important to methylation status such as betaine, fumaric acid, L-methionine, succinic acid, 5-methyltetrahydrofolic acid, and S-adenosylmethionine (SAM). These results suggest that GDM affects metabolites in fetal mice brains and further affects hippocampal DNA methylation and gene regulation involved in cognition, which is a potential mechanism for the adverse neurocognitive effects of GDM in offspring.

14.
Biochim Biophys Acta Mol Basis Dis ; 1868(5): 166355, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35131436

ABSTRACT

OBJECTIVES: The Developmental Origins of Health and Disease Science indicate that chronic diseases in adulthood are associated with prenatal and early-life traits. Our study aimed to explore the metabolic phenotype of offspring from advanced paternal age (APA) and the inherited alterations in sperm. METHODS: 3-month-old (Young father, YF-F0) and 21-month-old male (Old Father, OF-F0) C57BL/6J mice were used to study paternal aging's effect on offspring. Blood glucose testing, lipid analysis, indirect calorimetry and RNA sequencing were performed. RESULTS: The characterized metabolic changes in OF-F1 male mice offspring were glucose intolerance, hepatic lipid accumulation, increased adipocytes and impaired energy balance that lasted until they were elderly. Gene expression in both 8-week-old and 52-week-old offspring livers significantly altered in lipid metabolism- and thermogenesis-related pathways. PPAR signaling pathway was activated in both young and elderly offspring livers as indicated by significant upregulation of Cyp7a1, Cyp8b1, Cyp4a10, Cyp4a31, Fabp2, and Scd1. These targeted genes were also confirmed to be increased in offspring adipocytes. Furthermore, when examined the differentially expressed genes in F0 and F1 sperm, upregulated pathways including cholesterol metabolism, type II diabetes mellitus and endocrine resistance were strongly related to the APA offspring phenotype. Importantly, approximately 46.7% of enriched pathways in the sperm of APA offspring were consistent with those of APA fathers. CONCLUSIONS: These findings added evidence of the connection between paternal gametes and alterations in progeny genome and raised the possibility that inherited alterations in sperm contribute to the intergenerational effects of paternal aging offspring's chronic metabolic risks.


Subject(s)
Diabetes Mellitus, Type 2 , Paternal Age , Adult , Aged , Animals , Fathers , Female , Humans , Lipids , Male , Mice , Mice, Inbred C57BL , Pregnancy
15.
Reproduction ; 162(6): 437-448, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34605773

ABSTRACT

The number of children born after assisted reproductive technology (ART) is accumulating rapidly, and the health problems of the children are extensively concerned. This study aims to evaluate whether ART procedures alter behaviours in male offspring. Mouse models were utilized to establish three groups of offspring conceived by natural conception (NC), in vitro fertilization and embryo transfer (IVF-ET), and frozen-thawed embryo transfer (IVF-FET), respectively. A battery of behaviour experiments for evaluating anxiety and depression levels, including the open field test (OFT), elevated plus maze (EPM) test, light/dark transition test (L/DTT), tail suspension test (TST), forced swimming test (FST), and sucrose preference test (SPT) was carried out. Aged (18 months old), but not young (3 months old), male offspring in the IVF-ET and IVF-FET groups, compared with those in the NC group, exhibited increased anxiety and depression-like behaviours. The protein expression levels of three neurotrophins in PFC or hippocampus in aged male offspring from the IVF-ET and IVF-FET groups reduced at different extent, in comparison to NC group. RNA sequencing (RNA-Seq) was performed in the hippocampus of 18 months old offspring to further explore the gene expression profile changes in the three groups. KEGG analyses revealed the coexisted pathways, such as PI3K-Akt signalling pathway, which potentially reflected the similarity and divergence in anxiety and depression between the offspring conceived by IVF-ET and IVF-FET. Our research suggested the adverse effects of advanced age on the psychological health of children born after ART should be highlighted in the future.


Subject(s)
Depression , Phosphatidylinositol 3-Kinases , Animals , Anxiety/etiology , Depression/etiology , Fertilization in Vitro/adverse effects , Male , Mice , Reproductive Techniques, Assisted/adverse effects , Retrospective Studies
16.
Front Endocrinol (Lausanne) ; 12: 710221, 2021.
Article in English | MEDLINE | ID: mdl-34531826

ABSTRACT

Mounting evidence has shown that intrauterine hyperglycemia exposure during critical stages of development may be contributing to the increasing prevalence of diabetes. However, little is known about the mechanisms responsible for offspring metabolic disorder. In this present study, we explored intrauterine hyperglycemia exposure on fetal pancreatic metabolome, and its potential link to impaired glucose tolerance in adult offspring. Here, using a GDM mouse model, we found the metabolome profiling of pancreas from male and female fetus showing altered metabolites in several important pathways, including 5-methylcytosine, α-KG, branched-chain amino acids, and cystine, which are associated with epigenetic modification, insulin secretion, and intracellular redox status, respectively. This finding suggests that intrauterine exposure to hyperglycemia could cause altered metabolome in pancreas, which might be a metabolism-mediated mechanism for GDM-induced intergenerational diabetes predisposition.


Subject(s)
Biomarkers/metabolism , Diabetes, Gestational/physiopathology , Fetus/metabolism , Glucose Intolerance/pathology , Hyperglycemia/pathology , Metabolome , Uterus/physiopathology , Animals , Epigenesis, Genetic , Female , Fetus/pathology , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Hyperglycemia/genetics , Hyperglycemia/metabolism , Male , Pancreas/metabolism , Pancreas/pathology , Pregnancy , Sex Factors
17.
Transl Psychiatry ; 11(1): 434, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34417446

ABSTRACT

Studies on humans and animals suggest associations between gestational diabetes mellitus (GDM) with increased susceptibility to develop neurological disorders in offspring. However, the molecular mechanisms underpinning the intergenerational effects remain unclear. Using a mouse model of diabetes during pregnancy, we found that intrauterine hyperglycemia exposure resulted in memory impairment in both the first filial (F1) males and the second filial (F2) males from the F1 male offspring. Transcriptome profiling of F1 and F2 hippocampi revealed that differentially expressed genes (DEGs) were enriched in neurodevelopment and synaptic plasticity. The reduced representation bisulfite sequencing (RRBS) of sperm in F1 adult males showed that the intrauterine hyperglycemia exposure caused altered methylated modification of F1 sperm, which is a potential epigenetic mechanism for the intergenerational neurocognitive effects of GDM.


Subject(s)
Diabetes, Gestational , Hyperglycemia , Prenatal Exposure Delayed Effects , Animals , Diabetes, Gestational/genetics , Epigenesis, Genetic , Female , Hyperglycemia/complications , Hyperglycemia/genetics , Male , Pregnancy , Prenatal Exposure Delayed Effects/genetics
18.
Front Genet ; 12: 679616, 2021.
Article in English | MEDLINE | ID: mdl-34276782

ABSTRACT

Intrathymic differentiation of T lymphocytes begins as early as intrauterine stage, yet the T cell lineage decisions of human fetal thymocytes at different gestational ages are not currently understood. Here, we performed integrative single-cell analyses of thymocytes across gestational ages. We identified conserved candidates underlying the selection of T cell receptor (TCR) lineages in different human fetal stages. The trajectory of early thymocyte commitment during fetal growth was also characterized. Comparisons with mouse data revealed conserved and species-specific transcriptional dynamics of thymocyte proliferation, apoptosis and selection. Genome-wide association study (GWAS) data associated with multiple autoimmune disorders were analyzed to characterize susceptibility genes that are highly expressed at specific stages during fetal thymocyte development. In summary, our integrative map describes previously underappreciated aspects of human thymocyte development, and provides a comprehensive reference for understanding T cell lymphopoiesis in a self-tolerant and functional adaptive immune system.

20.
Adv Sci (Weinh) ; 8(7): 2002715, 2021 04.
Article in English | MEDLINE | ID: mdl-33854880

ABSTRACT

The rise of metabolic disorders in modern times is mainly attributed to the environment. However, heritable effects of environmental chemicals on mammalian offsprings' metabolic health are unclear. Inorganic arsenic (iAs) is the top chemical on the Agency for Toxic Substances and Disease Registry priority list of hazardous substances. Here, we assess cross-generational effects of iAs in an exclusive male-lineage transmission paradigm. The exposure of male mice to 250 ppb iAs causes glucose intolerance and hepatic insulin resistance in F1 females, but not males, without affecting body weight. Hepatic expression of glucose metabolic genes, glucose output, and insulin signaling are disrupted in F1 females. Inhibition of the glucose 6-phosphatase complex masks the intergenerational effect of iAs, demonstrating a causative role of hepatic glucose production. F2 offspring from grandpaternal iAs exposure show temporary growth retardation at an early age, which diminishes in adults. However, reduced adiposity persists into middle age and is associated with altered gut microbiome and increased brown adipose thermogenesis. In contrast, F3 offspring of the male-lineage iAs exposure show increased adiposity, especially on a high-calorie diet. These findings have unveiled sex- and generation-specific heritable effects of iAs on metabolic physiology, which has broad implications in understanding gene-environment interactions.


Subject(s)
Arsenic/adverse effects , Body Weight , Gastrointestinal Microbiome , Glucose Intolerance/chemically induced , Growth Disorders/chemically induced , Insulin Resistance , Paternal Exposure/adverse effects , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...