Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(13): e202400828, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38326235

ABSTRACT

Targeted synthesis of acetic acid (CH3 COOH) from CO2 photoreduction under mild conditions mainly limits by the kinetic challenge of the C-C coupling. Herein, we utilized doping engineering to build charge-asymmetrical metal pair sites for boosted C-C coupling, enhancing the activity and selectivity of CO2 photoreduction towards CH3 COOH. As a prototype, the Pd doped Co3 O4 atomic layers are synthesized, where the established charge-asymmetrical cobalt pair sites are verified by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy spectra. Theoretical calculations not only reveal the charge-asymmetrical cobalt pair sites caused by Pd atom doping, but also manifest the promoted C-C coupling of double *COOH intermediates through shortening of the coupled C-C bond distance from 1.54 to 1.52 Å and lowering their formation energy barrier from 0.77 to 0.33 eV. Importantly, the decreased reaction energy barrier from the protonation of two*COOH into *CO intermediates for the Pd-Co3 O4 atomic layer slab is 0.49 eV, higher than that of the Co3 O4 atomic layer slab (0.41 eV). Therefore, the Pd-Co3 O4 atomic layers exhibit the CH3 COOH evolution rate of ca. 13.8 µmol g-1 h-1 with near 100% selectivity, both of which outperform all previously reported single photocatalysts for CO2 photoreduction towards CH3 COOH under similar conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...