Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 181: 261-269, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31153021

ABSTRACT

Self-assembly of the functional units onto the surface of nanoparticles is a powerful approach to generate functional nanosystems. In this work, we first expressed a recombinant class III polyphosphate kinase 2 (ArPPK2) with his-tag. It is able to synthesize ATP from AMP by a single enzyme, simplifying two-step reaction of ATP regeneration from AMP. Then we chose the Fe-based metal-organic frameworks (MOF)s as carriers to produce the enzyme-MOF biocomposite, based on the interaction between the his-tags and coordinatively unsaturated metal sites present on the external surface of MOFs by a self-assembly process. It was found that ArPPK2@MIL-101-NH2@Fe3O4-COOH exhibited better reusability than other candidates during cycle analysis, preserving 70.1% of initial activity after reusing thirteen times, and also retained high storage stability. The optimum pH of the enzyme-MOF biocomposite was increased from 8.0 to 9.0 and the optimum temperature was increased from 30℃ to 45℃. Compared to free ArPPK2, the enzyme-MOF biocomposite showed increased thermal and pH stability. In addition, we successfully constructed an ATP regeneration system from AMP using the enzyme-MOF biocomposite, coupled with amide bond formation catalyzed by the adenylation domain of tyrocidine synthetase A (TycA-A). The immobilized ArPPK2 will provide a promising route for ATP regeneration from AMP in industrial processes. And the generation of the enzyme-MOF biocomposite by the self-assembly approach can be extended to efficiently immobilize other recombinant his-tagged enzymes.


Subject(s)
Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Enzymes, Immobilized/metabolism , Metal-Organic Frameworks/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Enzymes, Immobilized/chemistry , Iron Compounds/chemistry , Iron Compounds/metabolism , Metal-Organic Frameworks/chemistry , Particle Size , Phosphotransferases (Phosphate Group Acceptor)/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...