Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 9(5): 1256-1270, 2024 May.
Article in English | MEDLINE | ID: mdl-38649412

ABSTRACT

Epstein-Barr virus (EBV) can infect both B cells and epithelial cells (ECs), causing diseases such as mononucleosis and cancer. It enters ECs via Ephrin receptor A2 (EphA2). The function of interferon-induced transmembrane protein-1 (IFITM1) in EBV infection of ECs remains elusive. Here we report that IFITM1 inhibits EphA2-mediated EBV entry into ECs. RNA-sequencing and clinical sample analysis show reduced IFITM1 in EBV-positive ECs and a negative correlation between IFITM1 level and EBV copy number. IFITM1 depletion increases EBV infection and vice versa. Exogenous soluble IFITM1 effectively prevents EBV infection in vitro and in vivo. Furthermore, three-dimensional structure prediction and site-directed mutagenesis demonstrate that IFITM1 interacts with EphA2 via its two specific residues, competitively blocking EphA2 binding to EBV glycoproteins. Finally, YTHDF3, an m6A reader, suppresses IFITM1 via degradation-related DEAD-box protein 5 (DDX5). Thus, this study underscores IFITM1's crucial role in blocking EphA2-mediated EBV entry into ECs, indicating its potential in preventing EBV infection.


Subject(s)
Antigens, Differentiation , Ephrin-A2 , Epithelial Cells , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Receptor, EphA2 , Virus Internalization , Humans , Herpesvirus 4, Human/physiology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Epithelial Cells/virology , Epithelial Cells/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Receptor, EphA2/metabolism , Ephrin-A2/metabolism , Ephrin-A2/genetics , Antigens, Differentiation/metabolism , Antigens, Differentiation/genetics , Animals , HEK293 Cells , Protein Binding , Mice , Cell Line
2.
Curr Pharm Des ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38571354

ABSTRACT

BACKGROUND: Herb-paired Bletilla striata-Galla chinensis (BS-GC) is a classic combination of topical traditional Chinese medicine formulae in the treatment of chronic skin ulcers (CSUs). OBJECTIVE: The aim of this study is to explore the effective active ingredients of BS-GC, as well as the core targets and signal transduction pathways of its action on CSUs. METHODS: The ingredients of BS-GC were obtained from TCMSP and HERB databases. The targets of all active ingredients were retrieved from the SwissTargetPrediction database. The targets of CSUs were obtained from OMIM, GeneCards, Drugbank, and DisGeNET databases. A drug-disease target protein-protein interaction (PPI) network was constructed to select the most core targets, and an herb-ingredient-target network was built by utilizing Cytoscape 3.7.2. Furthermore, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes database (KEGG) analysis and verified the results of network pharmacology through molecular docking. RESULTS: A total of 40 active ingredients from the herb pair BS-GC were initially screened, and a total of 528 targets were retrieved. Meanwhile, the total number of CSU targets was 1032. Then, the number of common targets between BS-GC and CSUs was 107. The 13 core targets of herb pair BS-GC with CSUs were filtered out according to the PPI network, including AKT1, TNF, EGFR, BCL2, HIF1A, MMP-9, etc. The 5 main core active ingredients were 1-(4-Hydroxybenzyl)-2-methoxy-9,10-dihydrophenanthrene-4,7-diol, 1-(4- Hydroxybenzyl)-4-methoxy-9,10-dihydrophenanthrene-2,7-diol, physcion, dihydromyricetin, and myricetin. The main biological processes were inflammation, oxidative stress, and immune response, involving the AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway, NF-κB signaling pathway, and calcium signaling pathway. Molecular docking results showed good binding activity between the 5 main core active ingredients and 13 core targets. CONCLUSION: This study predicted the core targets and signal transduction pathways in the treatment of CSUs to provide a reference for further molecular mechanism research.

3.
Int J Gen Med ; 17: 49-58, 2024.
Article in English | MEDLINE | ID: mdl-38221940

ABSTRACT

Purpose: The benefits of physical activity (PA) are widely recognized, but the intensity of PA in inflammatory bowel disease (IBD) patients with varying disease activity levels remains controversial. We aimed to investigate the relationship between PA levels, fatigue, and other health-related quality of life (QoL) in Chinese IBD patients. Patients and Methods: The study is a cross-sectional investigation conducted at a comprehensive IBD diagnosis and treatment facility in East China, spanning from August 2022 to February 2023. A total of 245 participants were initially enrolled, and after excluding individuals with incomplete data about crucial exposure and outcome variables, the final sample size amounted to 237. Participants were provided with a questionnaire encompassing sociodemographic factors, clinical information, the International Physical Activity Questionnaire (IPAQ), the Multidimensional Fatigue Inventory (MFI-20), and the Inflammatory Bowel Disease Questionnaire (IBDQ). Correlation analysis was employed to assess the relationship between variables. Results: A majority of participants (144) exhibited low levels of PA. Furthermore, 40.5% of all participants reported experiencing fatigue. Individuals with low levels of PA had an average MIF-20 score of 62.9±16.0. Correlation analysis showed that PA was significantly and negatively associated with fatigue (r = -0.224, p < 0.001). Additionally, PA was also negatively correlated with anxiety (r = -0.150, p < 0.05) and depression (r = -0.242, p < 0.001). On the other hand, PA was positively correlated with quality of life (QoL) (r = 0.171, p < 0.01). Furthermore, our analysis indicated that sleep disorders were positively associated with both anxiety (r = 0.349, p < 0.01) and depression (r = 0.354, p < 0.001). Conclusion: The levels of PA are significantly low, and there is a high prevalence of fatigue among individuals with IBD. PA in IBD showed a strong negative correlation with fatigue and a strong positive correlation with quality of life.

4.
Viruses ; 15(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37766321

ABSTRACT

This study aimed to develop a model using Epstein-Barr virus (EBV)-associated hub genes in order to predict the prognosis of nasopharyngeal carcinoma (NPC). Differential expression analysis, univariate regression analysis, and machine learning were performed in three microarray datasets (GSE2371, GSE12452, and GSE102349) collected from the GEO database. Three hundred and sixty-six EBV-DEGs were identified, 25 of which were found to be significantly associated with NPC prognosis. These 25 genes were used to classify NPC into two subtypes, and six genes (C16orf54, CD27, CD53, CRIP1, RARRES3, and TBC1D10C) were found to be hub genes in NPC related to immune infiltration and cell cycle regulation. It was shown that these genes could be used to predict the prognosis of NPC, with functions related to tumor proliferation and immune infiltration, making them potential therapeutic targets. The findings of this study could aid in the development of screening and prognostic methods for NPC based on EBV-related features.

5.
Am J Transl Res ; 12(11): 7528-7541, 2020.
Article in English | MEDLINE | ID: mdl-33312387

ABSTRACT

MicroRNA-219-5p (miR-219-5p) is a key post-transcriptional regulator of gene expression that is known to regulate cancer progression, but its role in the context of hepatocellular carcinoma (HCC) remains to be fully elucidated. Herein, it was found that this miRNA functions as a tumor suppressor. Specifically, significant decreases in miR-219-5p expression were detected in HCC cells and patient serum samples relative to that found in the serum of 15 healthy people, and it was concluded that miR-219-5p overexpression was sufficient to impair HCC cell proliferation in vitro and vivo and migration in vitro. At the mechanistic level, it was found that miR-219-5p was able to suppress the expression of NEK6 (never in mitosis gene a-related kinase 6), thereby resulting in dysregulated ß-catenin/c-Myc-regulated gene expression. When NEK6 was overexpressed in HCC cells, this was sufficient to reverse the inhibitory impact of miR-219-5p on HCC cell proliferation both in vitro and vivo and metastasis in vitro. Bioinformatics analyses were also conducted, and both miR-219-5p and Nek6 were linked to disease progression in HCC patients with advanced disease. More importantly, the serum specimen data showed that reduced perioperative plasma miR-219-5p correlated significantly with increased risk of early recurrence after curative hepatectomy, whereas it was opposed to NEK6. Together, these findings highlight miR-219-5p as a potentially valuable diagnostic biomarker that can potentially be leveraged to improve clinical outcomes in HCC patients.

6.
Mol Ther Nucleic Acids ; 22: 153-165, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32927364

ABSTRACT

Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated cancer characterized by a high degree of recurrence, angiogenesis, and metastasis. The importance of alternative pro-angiogenesis pathways including viral factors has emerged after decades of directly targeting various signaling components. Using NPC as a model, we identified an essential oncogenic pathway underlying angiogenesis regulation that involves the inhibition of a tumor suppressor, Spry3, and its downstream targets by EBV-miR-BART10-5p (BART10-5p) and hsa-miR-18a (miR-18a). Overexpression of EBV-miR-BART10-5p and hsa-miR-18a strongly promotes angiogenesis in vitro and in vivo by regulating the expression of VEGF and HIF1-α in a Spry3-dependent manner. In vitro or in vivo treatment with iRGD-tagged exosomes containing antagomiR-BART10-5p and antagomiR-18a preferentially suppressed the angiogenesis and growth of NPC. Our findings first highlight the role of EBV-miR-BART10-5p and oncogenic hsa-miR-18a in NPC angiogenesis and also shed new insights into the clinical intervention and therapeutic strategies for nasopharyngeal carcinoma and other virus-associated tumors.

7.
Mol Immunol ; 124: 142-152, 2020 08.
Article in English | MEDLINE | ID: mdl-32563859

ABSTRACT

Long noncoding RNAs (lncRNAs) play an indispensable role in the process of M1 macrophage via regulating the development of macrophages and their responses to bacterial pathogens and viral infections. However, there are few studies on the lncRNA-mediated functions and regulatory mechanisms of M2 macrophage polarization. In this study, we found a number of differentially expressed lncRNAs between human monocyte derived M0 and M2 macrophages according to array analysis and quantitative polymerase chain reaction (qPCR) validation. The lncRNA RP11-389C8.2 (we named lnc-M2 in this study) was observed to be highly expressed in M2 macrophages. In Situ Localization and Quantification Analysis showed that lnc-M2 was expressed in the nucleus and cytosolic compartments of M2 macrophages. Notably, lnc-M2 knockdown enhanced the phagocytic ability of M2 macrophages. Ulteriorly, the results of RNA-Protein interaction experiments indicated that protein kinase A (PKA) was a lnc-M2 associated RNA-binding protein (RBP). Western blot showed that phosphorylated cAMP response element binding protein (p-CREB), a well-known key downstream transcription factor of PKA, was lowly phosphorylated in lnc-M2-silencing M2 macrophages. Furthermore, we found that transcriptional factor Signal Transducer And Activator Of Transcription 3 (STAT3) promoted lnc-M2 transcription along with the up-regulation of epigenetic histone modification markers at the lnc-M2 promoter locus, indicating that STAT3 activated lnc-M2 and eventually facilitated the process of M2 macrophage differentiation via the PKA/CREB pathway. Collectively, our date provide evidence that the transcription factor STAT3 can promote the transcription of lnc-M2 and facilitated the process of M2 macrophage differentiation via the PKA/CREB pathway. This study highlights a novel mechanism underlying the M2 macrophage differentiation.


Subject(s)
Gene Expression Regulation/immunology , Macrophage Activation/genetics , Macrophages/immunology , RNA, Long Noncoding/genetics , Cell Differentiation/genetics , Cells, Cultured , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation/genetics , Humans , Macrophages/metabolism , RNA, Long Noncoding/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/immunology
8.
Front Genet ; 10: 939, 2019.
Article in English | MEDLINE | ID: mdl-31681406

ABSTRACT

Cancer stem-like cells, possessing "stemness" properties, play crucial roles in progression, metastasis, and drug resistance in various cancers. Viral microRNAs (such as EBV-miR-BART7-3p), as exogenous regulators, have been discovered to regulate malignant progression of nasopharyngeal carcinoma (NPC), suggesting a possible role of viral microRNAs in imposing stemness. In this study, we found that EBV-miR-BART7-3p induce stemness of NPC cells. We firstly reported that EBV-miR-BART7-3p increased the percentage of side population cells, the development of tumor spheres, and the expression level of stemness markers in vitro. This viral microRNA also enhanced stem-like or cancer-initiating properties of NPC cells in vivo. Besides, we identified SMAD7 as a novel target gene of EBV-miR-BART7-3p in addition to PTEN gene we previously reported; this viral microRNA suppressed SMAD7, led to activation of TGF-ß signaling, and eventually enhanced the stemness of NPC cells. Silencing of SMAD7 resembled the effects generated by EBV-miR-BART7-3p in NPC cells. After reconstitution of SMAD7, EBV-miR-BART7-3p-expressing cells underwent a phenotypic reversion. EBV-positive NPC cells were used to enable experimental validation. Finally, we further discovered that EBV-miR-BART7-3p increased chemo-resistance of NPC in vitro and in vivo, supporting that EBV-miR-BART7-3 resulted in increased stemness of NPC cells and lead to drug resistance and cancer recurrence. Overall, this study uncovered a novel mechanism underlying viral microRNA-associated stemness of NPC cells. This viral microRNA and its associated cellular genes may be potential therapeutic targets for restraining chemo-resistance and recurrence of NPC.

SELECTION OF CITATIONS
SEARCH DETAIL
...