Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 23(3)2022 05 13.
Article in English | MEDLINE | ID: mdl-35348602

ABSTRACT

Proteins with desired functions and properties are important in fields like nanotechnology and biomedicine. De novo protein design enables the production of previously unseen proteins from the ground up and is believed as a key point for handling real social challenges. Recent introduction of deep learning into design methods exhibits a transformative influence and is expected to represent a promising and exciting future direction. In this review, we retrospect the major aspects of current advances in deep-learning-based design procedures and illustrate their novelty in comparison with conventional knowledge-based approaches through noticeable cases. We not only describe deep learning developments in structure-based protein design and direct sequence design, but also highlight recent applications of deep reinforcement learning in protein design. The future perspectives on design goals, challenges and opportunities are also comprehensively discussed.


Subject(s)
Deep Learning , Knowledge Bases , Proteins
2.
Bioinformatics ; 37(22): 4075-4082, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34042965

ABSTRACT

MOTIVATION: Gradient descent-based protein modeling is a popular protein structure prediction approach that takes as input the predicted inter-residue distances and other necessary constraints and folds protein structures by minimizing protein-specific energy potentials. The constraints from multiple predicted protein properties provide redundant and sometime conflicting information that can trap the optimization process into local minima and impairs the modeling efficiency. RESULTS: To address these issues, we developed a self-adaptive protein modeling framework, SAMF. It eliminates redundancy of constraints and resolves conflicts, folds protein structures in an iterative way, and picks up the best structures by a deep quality analysis system. Without a large amount of complicated domain knowledge and numerous patches as barriers, SAMF achieves the state-of-the-art performance by exploiting the power of cutting-edge techniques of deep learning. SAMF has a modular design and can be easily customized and extended. As the quality of input constraints is ever growing, the superiority of SAMF will be amplified over time. AVAILABILITY AND IMPLEMENTATION: The source code and data for reproducing the results is available at https://msracb.blob.core.windows.net/pub/psp/SAMF.zip. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteins , Software , Proteins/metabolism
3.
Adv Sci (Weinh) ; 7(19): 2001314, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33042750

ABSTRACT

Predicting protein structure from the amino acid sequence has been a challenge with theoretical and practical significance in biophysics. Despite the recent progresses elicited by improved inter-residue contact prediction, contact-based structure prediction has gradually reached the performance ceiling. New methods have been proposed to predict the inter-residue distance, but unanimously by simplifying the real-valued distance prediction into a multiclass classification problem. Here, a lightweight regression-based distance prediction method is shown, which adopts the generative adversarial network to capture the delicate geometric relationship between residue pairs and thus could predict the continuous, real-valued inter-residue distance rapidly and satisfactorily. The predicted residue distance map allows quick structure modeling by the CNS suite, and the constructed models approach the same level of quality as the other state-of-the-art protein structure prediction methods when tested on CASP13 targets. Moreover, this method can be used directly for the structure prediction of membrane proteins without transfer learning.

4.
Comput Struct Biotechnol J ; 16: 503-510, 2018.
Article in English | MEDLINE | ID: mdl-30505403

ABSTRACT

Information of residue-residue contacts is essential for understanding the mechanism of protein folding, and has been successfully applied as special topological restraints to simplify the conformational sampling in de novo protein structure prediction. Prediction of protein residue contacts has experienced amazingly rapid progresses recently, with prediction accuracy approaching impressively high levels in the past two years. In this work, we introduce a second version of our residue contact predictor, DeepConPred2, which exhibits substantially improved performance and sufficiently reduced running time after model re-optimization and feature updates. When testing on the CASP12 free modeling targets, our program reaches at least the same level of prediction accuracy as the best contact predictors so far and provides information complementary to other state-of-the-art methods in contact-assisted folding.

5.
Chem Pharm Bull (Tokyo) ; 63(8): 603-7, 2015.
Article in English | MEDLINE | ID: mdl-26040271

ABSTRACT

A series of aryl-2H-pyrazole derivatives were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro as potent xanthine oxidase inhibitors. Among them, 2 aryl-2H-pyrazole derivatives showed significant inhibitory activities against xanthine oxidase. Compound 19 emerged as the most potent xanthine oxidase inhibitor (IC50=9.8 µM) in comparison with allopurinol (IC50=9.5 µM). The docking study revealed that compound 19 might have strong interactions with the active site of xanthine oxidase. This compound is thus a new candidate for further development for the treatment of gout.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Xanthine Oxidase/antagonists & inhibitors , Animals , Catalytic Domain/drug effects , Cattle , Enzyme Inhibitors/chemical synthesis , Molecular Docking Simulation , Pyrazoles/chemical synthesis , Structure-Activity Relationship , Xanthine Oxidase/chemistry , Xanthine Oxidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL