Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Immunol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829131

ABSTRACT

The RING finger (RNF) family, a group of E3 ubiquitin ligases, plays multiple essential roles in the regulation of innate immunity and resistance to viral infection in mammals. However, it is still unclear whether RNF proteins affect the production of IFN-I and the replication of avian influenza virus (AIV) in ducks. In this article, we found that duck RNF216 (duRNF216) inhibited the duRIG-I signaling pathway. Conversely, duRNF216 deficiency enhanced innate immune responses in duck embryonic fibroblasts. duRNF216 did not interacted with duRIG-I, duMDA5, duMAVS, duSTING, duTBK1, or duIRF7 in the duck RIG-I pathway. However, duRNF216 targeted duTRAF3 and inhibited duMAVS in the recruitment of duTRAF3 in a dose-dependent manner. duRNF216 catalyzed K48-linked polyubiquitination of duck TRAF3, which was degraded by the proteasome pathway. Additionally, AIV PB1 protein competed with duTRAF3 for binding to duRNF216 to reduce degradation of TRAF3 by proteasomes in the cytoplasm, thereby slightly weakening duRNF216-mediated downregulation of IFN-I. Moreover, although duRNF216 downregulated the IFN-ß expression during virus infection, the expression level of IFN-ß in AIV-infected duck embryonic fibroblasts overexpressing duRNF216 was still higher than that in uninfected cells, which would hinder the viral replication. During AIV infection, duRNF216 protein targeted the core protein PB1 of viral polymerase to hinder viral polymerase activity and viral RNA synthesis in the nucleus, ultimately strongly restricting viral replication. Thus, our study reveals a new mechanism by which duRNF216 downregulates innate immunity and inhibits AIV replication in ducks. These findings broaden our understanding of the mechanisms by which the duRNF216 protein affects AIV replication in ducks.

2.
J Immunol ; 212(9): 1479-1492, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38477617

ABSTRACT

During avian influenza virus (AIV) infection, host defensive proteins promote antiviral innate immunity or antagonize viral components to limit viral replication. UFM1-specific ligase 1 (UFL1) is involved in regulating innate immunity and DNA virus replication in mammals, but the molecular mechanism by which chicken (ch)UFL1 regulates AIV replication is unclear. In this study, we first identified chUFL1 as a negative regulator of AIV replication by enhancing innate immunity and disrupting the assembly of the viral polymerase complex. Mechanistically, chUFL1 interacted with chicken stimulator of IFN genes (chSTING) and contributed to chSTING dimerization and the formation of the STING-TBK1-IRF7 complex. We further demonstrated that chUFL1 promoted K63-linked polyubiquitination of chSTING at K308 to facilitate chSTING-mediated type I IFN production independent of UFMylation. Additionally, chUFL1 expression was upregulated in response to AIV infection. Importantly, chUFL1 also interacted with the AIV PA protein to inhibit viral polymerase activity. Furthermore, chUFL1 impeded the nuclear import of the AIV PA protein and the assembly of the viral polymerase complex to suppress AIV replication. Collectively, these findings demonstrate that chUFL1 restricts AIV replication by disrupting the viral polymerase complex and facilitating type I IFN production, which provides new insights into the regulation of AIV replication in chickens.


Subject(s)
Influenza A virus , Influenza in Birds , Interferon Type I , Ubiquitin-Protein Ligases , Virus Replication , Animals , Chickens/genetics , Immunity, Innate , Influenza A virus/metabolism , Influenza A virus/physiology , Influenza in Birds/metabolism , Nucleotidyltransferases , Virus Replication/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Front Microbiol ; 14: 1301653, 2023.
Article in English | MEDLINE | ID: mdl-38098674

ABSTRACT

Duck Tembusu virus (DTMUV) is an emerging pathogen that poses a serious threat to the duck industry in China. Currently, polymerase chain reaction (PCR), quantitative PCR (qPCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP) are commonly used for DTMUV detection. However, these methods require complex steps and special equipment and easily cause false-positive results. Therefore, we urgently need to establish a simple, sensitive and specific method for the clinical field detection of DTMUV. In this study, we developed an RT-LAMP-based CRISPR-Cas12a assay targeting the C gene to detect DTMUV with a limited detection of 3 copies/µL. This assay was specific for DTMUV without cross-reaction with other common avian viruses and only required some simple pieces of equipment, such as a thermostat water bath and blue/UV light transilluminator. Furthermore, this assay showed 100% positive predictive agreement (PPA) and negative predictive agreement (NPA) relative to SYBR Green qPCR for DTMUV detection in 32 cloacal swabs and 22 tissue samples, supporting its application for clinical field detection.

4.
Front Microbiol ; 14: 1211355, 2023.
Article in English | MEDLINE | ID: mdl-37405154

ABSTRACT

Waterfowl, such as ducks, are natural hosts for avian influenza viruses (AIVs) and act as a bridge for transmitting the virus to humans or susceptible chickens. Since 2013, chickens and ducks have been threatened by waterfowl-origin H5N6 subtype AIVs in China. Therefore, it is necessary to investigate the genetic evolution, transmission, and pathogenicity of these viruses. In this study, we determined the genetic characteristics, transmission, and pathogenicity of waterfowl-origin H5N6 viruses in southern China. The hemagglutinin (HA) genes of H5N6 viruses were classified into the MIX-like branch of clade 2.3.4.4h. The neuraminidase (NA) genes belonged to the Eurasian lineage. The PB1 genes were classified into MIX-like and VN 2014-like branches. The remaining five genes were clustered into the MIX-like branch. Therefore, these viruses belonged to different genotypes. The cleavage site of the HA proteins of these viruses was RERRRKR/G, a molecular characteristic of the H5 highly pathogenic AIV. The NA stalk of all H5N6 viruses contained 11 amino acid deletions at residues 58-68. All viruses contained 627E and 701D in the PB2 proteins, which were molecular characteristics of typical bird AIVs. Furthermore, this study showed that Q135 and S23 viruses could replicate systematically in chickens and ducks. They did not cause death in ducks but induced mild clinical signs in them. All the infected chickens showed severe clinical signs and died. These viruses were shed from the digestive and respiratory tracts and transmitted horizontally in chickens and ducks. Our results provide valuable information for preventing H5N6 avian influenza outbreaks.

5.
Front Microbiol ; 14: 1105529, 2023.
Article in English | MEDLINE | ID: mdl-36960283

ABSTRACT

Since 2017, the new H7N9 highly pathogenic avian influenza viruses (HPAIVs) have been responsible for more than 200,000 cases of chicken infection and more than 120,000 chicken deaths in China. Our previous study found that the Q26 was chicken-origin H7N9 HPAIV. In this study, we analyzed the genetic characterization of Q24, Q65, Q66, Q85, and Q102 H7N9 avian influenza viruses isolated from Guangdong, China in 2017. Our results showed that these viruses were highly pathogenic and belonged to two different genotypes, which suggested they occurred genetic reassortant. To investigate the pathogenicity, transmission, and host immune responses of H7N9 virus in chickens, we selected Q24 and Q26 viruses to inoculate chickens. The Q24 and Q26 viruses killed all inoculated chickens within 3 days and replicated effectively in all tested tissues. They were efficiently transmitted to contact chickens and killed them within 4 days through direct contact. Furthermore, we found that the expressions of several immune-related genes (e.g., TLR3, TLR7, MDA5, MAVS, IFN-ß, IL-6, IL-8, OAS, Mx1, MHC I, and MHC II) were upregulated obviously in the lungs and spleen of chickens inoculated with the two H7N9 viruses at 24 h post-inoculation (HPI). Among these, IL-6 and IFN-ß in lungs were the most upregulated (by 341.02-381.48-fold and 472.50-500.56-fold, respectively). These results suggest that the new H7N9 viruses isolated in 2017, can replicate and transmit effectively and trigger strong immune responses in chickens, which helps us understand the genetic and pathogenic variations of H7N9 HPAIVs in China.

6.
J Immunol ; 210(6): 786-794, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36715497

ABSTRACT

Mitochondrial antiviral signaling protein (MAVS) is a key adaptor in cellular innate immunity. Ubiquitination plays an important role in regulating MAVS-mediated innate immune responses; however, the molecular mechanisms underlying ubiquitination of MAVS have not been fully elucidated. In this study, we first identified the mitochondria-resident E3 ligase duck membrane-associated RING-CH 8 (duMARCH8) in ducks as a negative regulator of duck MAVS (duMAVS). Overexpression of duMARCH8 impaired the duMAVS-mediated signaling pathway, whereas knockdown of duMARCH8 resulted in the opposite effects. The suppression was due to duMARCH8 interacting with duMAVS and degrading it in a proteasome-dependent manner. We further found that duMARCH8 interacted with the 176-619 regions of duMAVS. Moreover, duMARCH8 catalyzed the K29-linked polyubiquitination of duMAVS at Lys 398 to inhibit the MAVS-mediated signaling pathway. Collectively, our findings reveal a new strategy involving MARCH8 that targets the retinoic acid-inducible gene-I-like receptor signaling pathway to regulate innate immune responses in ducks.


Subject(s)
Ducks , Signal Transduction , Animals , Carrier Proteins/metabolism , Signal Transduction/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Mitochondrial Proteins/metabolism
7.
Transbound Emerg Dis ; 69(5): 2924-2937, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34982847

ABSTRACT

Feline calicivirus (FCV) is a highly infectious pathogen that causes upper respiratory tract disease (URTD), but the enteric FCVs raise concerns regarding their role of an enteric pathogen. In this study, between 2019 and 2020, 101 clinical samples from domestic cats with symptoms of URTD, with or without enteritis, were collected for FCV-specific detection. The FCV-positive rate reached to 42.4% (28/66) in cats with respiratory symptoms. The rates were 11.1% (3/27) and 12.5% (1/8) when faeces and serum samples were measured using reverse transcription polymerase chain reaction (RT-PCR), respectively. Ten FCV strains were successfully isolated from respiratory and enteric sources in domestic cats from Guangxi. Phylogenetic analysis based on the genome sequences of 11 isolates (including GX01-13 isolated in 2013) indicated that the newly characterized FCV strains had two recombinant events in comparison with other FCVs and were of respiratory and enteric origins. These strains displayed high genetic diversity, and they were divided into two genogroups (I and II). Of these, the GXNN02-19 isolate was grouped with previously published Chinese isolates that were identified as genogroup II, which contained three specific amino acid residues (377K, 539V and 557S) in the VP1 protein. In addition, the three enteric viruses appeared genetically heterogeneous to each other. All isolates were found to be more sensitive when exposed to low pH conditions, but they were resistant to treatment with trypsin and bile salts. Furthermore, there were no significant differences between the respiratory and enteric FCVs. Our results showed that the genetically distinct FCV strains with genogroups I and II from respiratory and enteric origins were co-circulating in this geographical area. Also, it was revealed that the potential recombinant events between the enteric and respiratory FCVs suggested an important role of enteric FCV during the evolution.


Subject(s)
Caliciviridae Infections , Calicivirus, Feline , Cat Diseases , Amino Acids/genetics , Animals , Bile Acids and Salts , Caliciviridae Infections/diagnosis , Caliciviridae Infections/epidemiology , Caliciviridae Infections/veterinary , Calicivirus, Feline/genetics , Cat Diseases/epidemiology , Cats , China/epidemiology , Genotype , Phylogeny , Trypsin/genetics
8.
Front Immunol ; 13: 1016214, 2022.
Article in English | MEDLINE | ID: mdl-36685538

ABSTRACT

The innate immune response is a host defense mechanism that induces type I interferon and proinflammatory cytokines. Tripartite motif (TRIM) family proteins have recently emerged as pivotal regulators of type I interferon production in mammals. Here, we first identified duck TRIM29, which encodes 571 amino acids and shows high sequence homology with other bird TRIM29 proteins. DuTRIM29 inhibited IFN-ß and IRF7 promoter activation in a dose-dependent manner and downregulated the mRNA expression of IFN-ß, IRF7, Mx and IL-6 mediated by duRIG-I. Moreover, duTRIM29 interacted and colocalized with duMAVS in the cytoplasm. DuTRIM29 interacted with duMAVS via its C-terminal domains. In addition, duTRIM29 inhibited IFN-ß and IRF7 promoter activation and significantly downregulated IFN-ß and immune-related gene expression mediated by duMAVS in ducks. Furthermore, duTRIM29 induced K29-linked polyubiquitination and degradation of duMAVS to suppress the expression of IFN-ß. Overall, our results demonstrate that duTRIM29 negatively regulates type I IFN production by targeting duMAVS in ducks. This study will contribute to a better understanding of the molecular mechanism regulating the innate immune response by TRIM proteins in ducks.


Subject(s)
Ducks , Interferon Type I , Animals , Interferon-beta/metabolism , Immunity, Innate , Gene Expression , Mammals/metabolism
9.
Emerg Microbes Infect ; 8(1): 1017-1026, 2019.
Article in English | MEDLINE | ID: mdl-31287780

ABSTRACT

Host switch events of influenza A viruses (IAVs) continuously pose a zoonotic threat to humans. In 2013, swine-origin H1N1 IAVs emerged in dogs soon after they were detected in swine in the Guangxi province of China. This host switch was followed by multiple reassortment events between these H1N1 and previously circulating H3N2 canine IAVs (IAVs-C) in dogs. To evaluate the phenotype of these newly identified viruses, we characterized three swine-origin H1N1 IAVs-C and one reassortant H1N1 IAV-C. We found that H1N1 IAVs-C predominantly bound to human-type receptors, efficiently transmitted via direct contact in guinea pigs and replicated in human lung cells. Moreover, the swine-origin H1N1 IAVs-C were lethal in mice and were transmissible by respiratory droplets in guinea pigs. Importantly, sporadic human infections with these viruses have been detected, and preexisting immunity in humans might not be sufficient to prevent infections with these new viruses. Our results show the potential of H1N1 IAVs-C to infect and transmit in humans, suggesting that these viruses should be closely monitored in the future.


Subject(s)
Dog Diseases/virology , Influenza A Virus, H1N1 Subtype/isolation & purification , Orthomyxoviridae Infections/veterinary , Swine Diseases/virology , Animals , China , Dog Diseases/mortality , Dogs , Female , Guinea Pigs , Humans , Influenza A Virus, H1N1 Subtype/classification , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/classification , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , Influenza, Human/mortality , Influenza, Human/virology , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/mortality , Orthomyxoviridae Infections/virology , Reassortant Viruses/classification , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Reassortant Viruses/pathogenicity , Swine , Swine Diseases/mortality , Virulence
10.
Emerg Microbes Infect ; 7(1): 85, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29765037

ABSTRACT

Considered a "mixing vessel" for influenza viruses, pigs can give rise to new influenza virus reassortants that can threaten humans. During our surveillance of pigs in Guangxi, China from 2013 to 2015, we isolated 11 H1N1 and three H3N2 influenza A viruses of swine origin (IAVs-S). Out of the 14, we detected ten novel triple-reassortant viruses, which contained surface genes (hemagglutinin and neuraminidase) from Eurasian avian-like (EA) H1N1 or seasonal human-like H3N2, matrix (M) genes from H1N1/2009 pandemic or EA H1N1, nonstructural (NS) genes from classical swine, and the remaining genes from H1N1/2009 pandemic. Mouse studies indicate that these IAVs-S replicate efficiently without prior adaptation, with some isolates demonstrating lethality. Notably, the reassortant EA H1N1 viruses with EA-like M gene have been reported in human infections. Further investigations will help to assess the potential risk of these novel triple-reassortant viruses to humans.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Neuraminidase/genetics , Reassortant Viruses/genetics , Reassortant Viruses/isolation & purification , Animals , Cell Line , China , Disease Outbreaks/veterinary , Dogs , Female , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H3N2 Subtype/isolation & purification , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Phylogeny , Swine , Swine Diseases/virology
11.
Genome Announc ; 4(5)2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27660782

ABSTRACT

Here, we report the complete genome of a feline calicivirus (FCV) originating from household cats in Guangxi, southern China, in September 2013. To understand its genetic characteristics, we isolated FCV strain GX01-2013 from MDCK cells and determined its complete genome sequence.

SELECTION OF CITATIONS
SEARCH DETAIL
...