Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
medRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496424

ABSTRACT

Background: Nineteen genomic regions have been associated with high-grade serous ovarian cancer (HGSOC). We used data from the Ovarian Cancer Association Consortium (OCAC), Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA), UK Biobank (UKBB), and FinnGen to identify novel HGSOC susceptibility loci and develop polygenic scores (PGS). Methods: We analyzed >22 million variants for 398,238 women. Associations were assessed separately by consortium and meta-analysed. OCAC and CIMBA data were used to develop PGS which were trained on FinnGen data and validated in UKBB and BioBank Japan. Results: Eight novel variants were associated with HGSOC risk. An interesting discovery biologically was finding that TP53 3'-UTR SNP rs78378222 was associated with HGSOC (per T allele relative risk (RR)=1.44, 95%CI:1.28-1.62, P=1.76×10-9). The optimal PGS included 64,518 variants and was associated with an odds ratio of 1.46 (95%CI:1.37-1.54) per standard deviation in the UKBB validation (AUROC curve=0.61, 95%CI:0.59-0.62). Conclusions: This study represents the largest GWAS for HGSOC to date. The results highlight that improvements in imputation reference panels and increased sample sizes can identify HGSOC associated variants that previously went undetected, resulting in improved PGS. The use of updated PGS in cancer risk prediction algorithms will then improve personalized risk prediction for HGSOC.

2.
Cancer Res ; 83(15): 2600-2613, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37145128

ABSTRACT

Somatic mutational profiling is increasingly being used to identify potential targets for breast cancer. However, limited tumor-sequencing data from Hispanic/Latinas (H/L) are available to guide treatment. To address this gap, we performed whole-exome sequencing (WES) and RNA sequencing on 146 tumors and WES of matched germline DNA from 140 H/L women in California. Tumor intrinsic subtype, somatic mutations, copy-number alterations, and expression profiles of the tumors were characterized and compared with data from tumors of non-Hispanic White (White) women in The Cancer Genome Atlas (TCGA). Eight genes were significantly mutated in the H/L tumors including PIK3CA, TP53, GATA3, MAP3K1, CDH1, CBFB, PTEN, and RUNX1; the prevalence of mutations in these genes was similar to that observed in White women in TCGA. Four previously reported Catalogue of Somatic Mutations in Cancer (COSMIC) mutation signatures (1, 2, 3, 13) were found in the H/L dataset, along with signature 16 that has not been previously reported in other breast cancer datasets. Recurrent amplifications were observed in breast cancer drivers including MYC, FGFR1, CCND1, and ERBB2, as well as a recurrent amplification in 17q11.2 associated with high KIAA0100 gene expression that has been implicated in breast cancer aggressiveness. In conclusion, this study identified a higher prevalence of COSMIC signature 16 and a recurrent copy-number amplification affecting expression of KIAA0100 in breast tumors from H/L compared with White women. These results highlight the necessity of studying underrepresented populations. SIGNIFICANCE: Comprehensive characterization of genomic and transcriptomic alterations in breast tumors from Hispanic/Latina patients reveals distinct genetic alterations and signatures, demonstrating the importance of inclusive studies to ensure equitable care for patients. See related commentary by Schmit et al., p. 2443.


Subject(s)
Breast Neoplasms , Hispanic or Latino , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Hispanic or Latino/genetics , Mutation , Transcriptome
3.
Eur J Hum Genet ; 31(2): 216-222, 2023 02.
Article in English | MEDLINE | ID: mdl-36434258

ABSTRACT

Despite substantial efforts in identifying both rare and common variants affecting disease risk, in the majority of diseases, a large proportion of unexplained genetic risk remains. We propose that variable number tandem repeats (VNTRs) may explain a proportion of the missing genetic risk. Herein, in a pilot study with a retrospective cohort design, we tested whether VNTRs are causal modifiers of breast cancer risk in 347 female carriers of the BRCA1 185delAG pathogenic variant, an important group given their high risk of developing breast cancer. We performed targeted-capture to sequence VNTRs, called genotypes with adVNTR, tested the association of VNTRs and breast cancer risk using Cox regression models, and estimated the effect size using a retrospective likelihood approach. Of 303 VNTRs that passed quality control checks, 4 VNTRs were significantly associated with risk to develop breast cancer at false discovery rate [FDR] < 0.05 and an additional 4 VNTRs had FDR < 0.25. After determining the specific risk alleles, there was a significantly earlier age at diagnosis of breast cancer in carriers of the risk alleles compared to those without the risk alleles for seven of eight VNTRs. One example is a VNTR in exon 2 of LINC01973 with a per-allele hazard ratio of 1.58 (1.07-2.33) and 5.28 (2.79-9.99) for the homozygous risk-allele genotype. Results from this first systematic study of VNTRs demonstrate that VNTRs may explain a proportion of the unexplained genetic risk for breast cancer.


Subject(s)
Breast Neoplasms , Minisatellite Repeats , Female , Humans , Breast Neoplasms/genetics , Retrospective Studies , Likelihood Functions , Pilot Projects , Risk Factors , Alleles , BRCA1 Protein/genetics
4.
Commun Biol ; 5(1): 1061, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36203093

ABSTRACT

The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.


Subject(s)
Breast Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA Copy Number Variations , Female , Genetic Predisposition to Disease , Heterozygote , Humans , RNA, Messenger
5.
J Natl Cancer Inst ; 114(1): 109-122, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34320204

ABSTRACT

BACKGROUND: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers. METHODS: 483 BRCA1 and 1318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were 3 versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen receptor (ER)-negative (PRSER-), or ER-positive (PRSER+) breast cancer risk. RESULTS: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07 to 1.83) for BRCA1 and 1.33 (95% CI = 1.16 to 1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for BRCA1 (OR = 1.73, 95% CI = 1.28 to 2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34 to 1.91) carriers. The estimated breast cancer odds ratios were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions. CONCLUSIONS: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and informing clinical management.


Subject(s)
Breast Neoplasms , Prostatic Neoplasms , Aged, 80 and over , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Heterozygote , Humans , Male , Mutation , Polymorphism, Single Nucleotide , Prostatic Neoplasms/epidemiology , Prostatic Neoplasms/genetics , Risk Assessment , Risk Factors
6.
Environ Int ; 156: 106772, 2021 11.
Article in English | MEDLINE | ID: mdl-34425644

ABSTRACT

BACKGROUND: Exposure to polybrominated diphenyl ethers (PBDEs) may influence risk of developing post-menopausal breast cancer. Although mechanisms are poorly understood, epigenetic regulation of gene expression may play a role. OBJECTIVES: To identify DNA methylation (DNAm) changes associated with PBDE serum levels and test the association of these biomarkers with breast cancer risk. METHODS: We studied 397 healthy women (controls) and 133 women diagnosed with breast cancer (cases) between ages 40 and 58 years who participated in the California Teachers Study. PBDE levels were measured in blood. Infinium Human Methylation EPIC Bead Chips were used to measure DNAm. Using multivariable linear regression models, differentially methylated CpG sites (DMSs) and regions (DMRs) associated with serum PBDE levels were identified using controls. For top-ranked DMSs and DMRs, targeted next-generation bisulfite sequencing was used to measure DNAm for 133 invasive breast cancer cases and 301 age-matched controls. Conditional logistic regression was used to evaluate associations between DMSs and DMRs and breast cancer risk. RESULTS: We identified 15 DMSs and 10 DMRs statistically significantly associated with PBDE levels (FDR < 0.05). Methylation changes in a DMS at BMP8B and DMRs at TP53 and A2M-AS1 were statistically significantly (FDR < 0.05) associated with breast cancer risk. CONCLUSION: We show for the first time that serum PBDE levels are associated with differential methylation and that PBDE-associated DNAm changes in blood are associated with breast cancer risk.


Subject(s)
Breast Neoplasms , Halogenated Diphenyl Ethers , Adult , Biomarkers , Breast Neoplasms/genetics , DNA Methylation , Epigenesis, Genetic , Female , Halogenated Diphenyl Ethers/toxicity , Humans , Menopause , Middle Aged
7.
Nat Commun ; 12(1): 2075, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824302

ABSTRACT

Variable number tandem repeats (VNTRs) account for significant genetic variation in many organisms. In humans, VNTRs have been implicated in both Mendelian and complex disorders, but are largely ignored by genomic pipelines due to the complexity of genotyping and the computational expense. We describe adVNTR-NN, a method that uses shallow neural networks to genotype a VNTR in 18 seconds on 55X whole genome data, while maintaining high accuracy. We use adVNTR-NN to genotype 10,264 VNTRs in 652 GTEx individuals. Associating VNTR length with gene expression in 46 tissues, we identify 163 "eVNTRs". Of the 22 eVNTRs in blood where independent data is available, 21 (95%) are replicated in terms of significance and direction of association. 49% of the eVNTR loci show a strong and likely causal impact on the expression of genes and 80% have maximum effect size at least 0.3. The impacted genes are involved in diseases including Alzheimer's, obesity and familial cancers, highlighting the importance of VNTRs for understanding the genetic basis of complex diseases.


Subject(s)
Gene Expression Regulation , Minisatellite Repeats/genetics , Alleles , Cerebral Cortex/metabolism , Cohort Studies , Genetic Loci , Genotype , Humans , Reproducibility of Results
8.
Genet Med ; 22(10): 1653-1666, 2020 10.
Article in English | MEDLINE | ID: mdl-32665703

ABSTRACT

PURPOSE: We assessed the associations between population-based polygenic risk scores (PRS) for breast (BC) or epithelial ovarian cancer (EOC) with cancer risks for BRCA1 and BRCA2 pathogenic variant carriers. METHODS: Retrospective cohort data on 18,935 BRCA1 and 12,339 BRCA2 female pathogenic variant carriers of European ancestry were available. Three versions of a 313 single-nucleotide polymorphism (SNP) BC PRS were evaluated based on whether they predict overall, estrogen receptor (ER)-negative, or ER-positive BC, and two PRS for overall or high-grade serous EOC. Associations were validated in a prospective cohort. RESULTS: The ER-negative PRS showed the strongest association with BC risk for BRCA1 carriers (hazard ratio [HR] per standard deviation = 1.29 [95% CI 1.25-1.33], P = 3×10-72). For BRCA2, the strongest association was with overall BC PRS (HR = 1.31 [95% CI 1.27-1.36], P = 7×10-50). HR estimates decreased significantly with age and there was evidence for differences in associations by predicted variant effects on protein expression. The HR estimates were smaller than general population estimates. The high-grade serous PRS yielded the strongest associations with EOC risk for BRCA1 (HR = 1.32 [95% CI 1.25-1.40], P = 3×10-22) and BRCA2 (HR = 1.44 [95% CI 1.30-1.60], P = 4×10-12) carriers. The associations in the prospective cohort were similar. CONCLUSION: Population-based PRS are strongly associated with BC and EOC risks for BRCA1/2 carriers and predict substantial absolute risk differences for women at PRS distribution extremes.


Subject(s)
Breast Neoplasms , Ovarian Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Carcinoma, Ovarian Epithelial/genetics , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Mutation , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Prospective Studies , Retrospective Studies , Risk Factors
9.
JAMA Oncol ; 6(8): 1218-1230, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32614418

ABSTRACT

Importance: The limited data on cancer phenotypes in men with germline BRCA1 and BRCA2 pathogenic variants (PVs) have hampered the development of evidence-based recommendations for early cancer detection and risk reduction in this population. Objective: To compare the cancer spectrum and frequencies between male BRCA1 and BRCA2 PV carriers. Design, Setting, and Participants: Retrospective cohort study of 6902 men, including 3651 BRCA1 and 3251 BRCA2 PV carriers, older than 18 years recruited from cancer genetics clinics from 1966 to 2017 by 53 study groups in 33 countries worldwide collaborating through the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Clinical data and pathologic characteristics were collected. Main Outcomes and Measures: BRCA1/2 status was the outcome in a logistic regression, and cancer diagnoses were the independent predictors. All odds ratios (ORs) were adjusted for age, country of origin, and calendar year of the first interview. Results: Among the 6902 men in the study (median [range] age, 51.6 [18-100] years), 1634 cancers were diagnosed in 1376 men (19.9%), the majority (922 of 1,376 [67%]) being BRCA2 PV carriers. Being affected by any cancer was associated with a higher probability of being a BRCA2, rather than a BRCA1, PV carrier (OR, 3.23; 95% CI, 2.81-3.70; P < .001), as well as developing 2 (OR, 7.97; 95% CI, 5.47-11.60; P < .001) and 3 (OR, 19.60; 95% CI, 4.64-82.89; P < .001) primary tumors. A higher frequency of breast (OR, 5.47; 95% CI, 4.06-7.37; P < .001) and prostate (OR, 1.39; 95% CI, 1.09-1.78; P = .008) cancers was associated with a higher probability of being a BRCA2 PV carrier. Among cancers other than breast and prostate, pancreatic cancer was associated with a higher probability (OR, 3.00; 95% CI, 1.55-5.81; P = .001) and colorectal cancer with a lower probability (OR, 0.47; 95% CI, 0.29-0.78; P = .003) of being a BRCA2 PV carrier. Conclusions and Relevance: Significant differences in the cancer spectrum were observed in male BRCA2, compared with BRCA1, PV carriers. These data may inform future recommendations for surveillance of BRCA1/2-associated cancers and guide future prospective studies for estimating cancer risks in men with BRCA1/2 PVs.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Neoplasms/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Germ-Line Mutation , Humans , Male , Middle Aged , Neoplasms/diagnosis , Phenotype , Retrospective Studies , Young Adult
10.
Mol Oncol ; 14(6): 1124-1133, 2020 06.
Article in English | MEDLINE | ID: mdl-32175645

ABSTRACT

Women who carry pathogenic mutations in BRCA1 and BRCA2 have a lifetime risk of developing breast cancer of up to 80%. However, risk estimates vary in part due to genetic modifiers. We investigated the association of the RAD52 S346X variant as a modifier of the risk of developing breast and ovarian cancers in BRCA1 and BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2. The RAD52 S346X allele was associated with a reduced risk of developing breast cancer in BRCA2 carriers [per-allele hazard ratio (HR) = 0.69, 95% confidence interval (CI) 0.56-0.86; P = 0.0008] and to a lesser extent in BRCA1 carriers (per-allele HR = 0.78, 95% CI 0.64-0.97, P = 0.02). We examined how this variant affected DNA repair. Using a reporter system that measures repair of DNA double-strand breaks (DSBs) by single-strand annealing (SSA), expression of hRAD52 suppressed the loss of this repair in Rad52-/- mouse embryonic stem cells. When hRAD52 S346X was expressed in these cells, there was a significantly reduced frequency of SSA. Interestingly, expression of hRAD52 S346X also reduced the stimulation of SSA observed upon depletion of BRCA2, demonstrating the reciprocal roles for RAD52 and BRCA2 in the control of DSB repair by SSA. From an immunofluorescence analysis, we observed little nuclear localization of the mutant protein as compared to the wild-type; it is likely that the reduced nuclear levels of RAD52 S346X explain the diminished DSB repair by SSA. Altogether, we identified a genetic modifier that protects against breast cancer in women who carry pathogenic mutations in BRCA2 (P = 0.0008) and to a lesser extent BRCA1 (P = 0.02). This RAD52 mutation causes a reduction in DSB repair by SSA, suggesting that defects in RAD52-dependent DSB repair are linked to reduced tumor risk in BRCA2-mutation carriers.


Subject(s)
BRCA2 Protein/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Rad52 DNA Repair and Recombination Protein/genetics , Animals , BRCA1 Protein/genetics , Cytoplasm/metabolism , DNA, Neoplasm/metabolism , Female , Genetic Association Studies , Heterozygote , Humans , Mice , Ovarian Neoplasms/genetics , Risk Factors , Subcellular Fractions/metabolism
11.
Cancer Epidemiol ; 65: 101688, 2020 04.
Article in English | MEDLINE | ID: mdl-32092486

ABSTRACT

INTRODUCTION: Although clinical prognostic indicators exist for follicular lymphoma(FL), patient outcomes remain heterogeneous. MATERIAL AND METHODS: We evaluated the association between survival and a polygenic risk score(PRS) composed of five previously identified FL susceptibility loci(rs12195582, rs13254990, rs17749561, rs4245081, rs4938573) among women who participated in a case-control study of non-Hodgkin lymphoma in Los Angeles County between 2004-2008. Risk associations were estimated through logistic regression, calculating the odds ratios(OR) and 95 % confidence intervals(95 % CI). Survival was estimated under a Cox proportional hazards model and hazard ratios(HR) and 95 % CI were calculated. RESULTS: Among 437 non-Hispanic White controls and 100 non-Hispanic White FL patients, we confirmed a 2.6-fold increased risk of FL associated with the highest PRS tertile (95 % CI:1.35-4.86). After accounting for clinical indicators, the PRS was associated with improved overall survival in non-Hispanic women (HR:0.31; 95 % CI:0.10-0.96). CONCLUSION: PRS was associated with increased risk of FL, but improved overall survival.


Subject(s)
Lymphoma, Follicular/epidemiology , Adult , Aged , Case-Control Studies , Female , Humans , Los Angeles/epidemiology , Lymphoma, Follicular/mortality , Middle Aged , Prognosis , Risk Factors , Survival Analysis
12.
Oncotarget ; 10(2): 198-208, 2019 Jan 04.
Article in English | MEDLINE | ID: mdl-30719214

ABSTRACT

Molecular subtypes of triple negative breast cancer (TNBC) are associated with variation in survival and may assist in treatment selection. However, the association of patient race or ethnicity with subtypes of TNBC and clinical outcome has not been addressed. Using nCounter Gene Expression Codesets, we classified TNBCs into subtypes: basal-like immune-activated (BLIA), basal-like immunosuppressed (BLIS), luminal androgen receptor (LAR), and mesenchymal (MES) in 48 Hispanic, 12 African-American, 21 Asian, and 34 White patients. Mean age at diagnosis was significantly associated with subtype, with the youngest mean age (50 years) in MES and the oldest mean age (64 years) in LAR (p < 0.0005). Subtype was significantly associated with tumor grade (p = 0.0012) and positive lymph nodes (p = 0.021), with a marginally significant association of tumor stage (p = 0.076). In multivariate Cox-proportional hazards modeling, BLIS was associated with worst survival and LAR with best survival. Hispanics had a significantly higher proportion of BLIS (53%, p = 0.03), whereas Asians had a lower proportion of BLIS (19%, p = 0.05) and a higher proportion of LAR (38%, p = 0.06) compared to the average proportion across all groups. These differences in proportions of subtype across racial and ethnic groups may explain differences in their outcomes. Determining subtypes of TNBC facilitates understanding of the heterogeneity of the TNBCs and provides a foundation for developing subtype-specific therapies and better predictors of TNBC prognosis for all races and ethnicities.

13.
Breast Cancer Res ; 21(1): 3, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30642363

ABSTRACT

BACKGROUND: Breast cancer is a partially heritable trait and genome-wide association studies (GWAS) have identified over 180 common genetic variants associated with breast cancer. We have previously performed breast cancer GWAS in Latinas and identified a strongly protective single nucleotide polymorphism (SNP) at 6q25, with the protective minor allele originating from indigenous American ancestry. Here we report on fine mapping of the 6q25 locus in an expanded sample of Latinas. METHODS: We performed GWAS in 2385 cases and 6416 controls who were either US Latinas or Mexican women. We replicated the top SNPs in 2412 cases and 1620 controls of US Latina, Mexican, and Colombian women. In addition, we validated the top novel variants in studies of African, Asian and European ancestry. In each dataset we used logistic regression models to test the association between SNPs and breast cancer risk and corrected for genetic ancestry using either principal components or genetic ancestry inferred from ancestry informative markers using a model-based approach. RESULTS: We identified a novel set of SNPs at the 6q25 locus associated with genome-wide levels of significance (p = 3.3 × 10- 8 - 6.0 × 10- 9) not in linkage disequilibrium (LD) with variants previously reported at this locus. These SNPs were in high LD (r2 > 0.9) with each other, with the top SNP, rs3778609, associated with breast cancer with an odds ratio (OR) and 95% confidence interval (95% CI) of 0.76 (0.70-0.84). In a replication in women of Latin American origin, we also observed a consistent effect (OR 0.88; 95% CI 0.78-0.99; p = 0.037). We also performed a meta-analysis of these SNPs in East Asians, African ancestry and European ancestry populations and also observed a consistent effect (rs3778609, OR 0.95; 95% CI 0.91-0.97; p = 0.0017). CONCLUSION: Our study adds to evidence about the importance of the 6q25 locus for breast cancer susceptibility. Our finding also highlights the utility of performing additional searches for genetic variants for breast cancer in non-European populations.


Subject(s)
Breast Neoplasms/genetics , Chromosomes, Human, Pair 6/genetics , Genetic Loci/genetics , Genetic Predisposition to Disease , Adult , Aged , Breast , Case-Control Studies , Chromosome Mapping , Datasets as Topic , Female , Genome-Wide Association Study , Hispanic or Latino/genetics , Humans , Middle Aged , Polymorphism, Single Nucleotide
14.
Fam Cancer ; 17(2): 187-195, 2018 04.
Article in English | MEDLINE | ID: mdl-28864920

ABSTRACT

African-American women are more likely to develop aggressive breast cancer at younger ages and experience poorer cancer prognoses than non-Hispanic Caucasians. Deficiency in repair of DNA by homologous recombination (HR) is associated with cancer development, suggesting that mutations in genes that affect this process may cause breast cancer. Inherited pathogenic mutations have been identified in genes involved in repairing DNA damage, but few studies have focused on African-Americans. We screened for germline mutations in seven HR repair pathway genes in DNA of 181 African-American women with breast cancer, evaluated the potential effects of identified missense variants using in silico prediction software, and functionally characterized a set of missense variants by yeast two-hybrid assays. We identified five likely-damaging variants, including two PALB2 truncating variants (Q151X and W1038X) and three novel missense variants (RAD51C C135R, and XRCC3 L297P and V337E) that abolish protein-protein interactions in yeast two-hybrid assays. Our results add to evidence that HR gene mutations account for a proportion of the genetic risk for developing breast cancer in African-Americans. Identifying additional mutations that diminish HR may provide a tool for better assessing breast cancer risk and improving approaches for targeted treatment.


Subject(s)
Black or African American/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Homologous Recombination/genetics , Adult , Aged , DNA-Binding Proteins/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Female , Germ-Line Mutation , Humans , Middle Aged , Mutation, Missense , Young Adult
15.
J Clin Oncol ; 35(20): 2240-2250, 2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28448241

ABSTRACT

Purpose BRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigated-for the first time to our knowledge-associations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/ 2 mutations and implications for cancer risk prediction. Materials and Methods We genotyped 1,802 male carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of BRCA1/2 by using the custom Illumina OncoArray. We investigated the combined effects of established breast and prostate cancer susceptibility variants on cancer risks for male carriers of BRCA1/2 mutations by constructing weighted polygenic risk scores (PRSs) using published effect estimates as weights. Results In male carriers of BRCA1/2 mutations, PRS that was based on 88 female breast cancer susceptibility variants was associated with breast cancer risk (odds ratio per standard deviation of PRS, 1.36; 95% CI, 1.19 to 1.56; P = 8.6 × 10-6). Similarly, PRS that was based on 103 prostate cancer susceptibility variants was associated with prostate cancer risk (odds ratio per SD of PRS, 1.56; 95% CI, 1.35 to 1.81; P = 3.2 × 10-9). Large differences in absolute cancer risks were observed at the extremes of the PRS distribution. For example, prostate cancer risk by age 80 years at the 5th and 95th percentiles of the PRS varies from 7% to 26% for carriers of BRCA1 mutations and from 19% to 61% for carriers of BRCA2 mutations, respectively. Conclusion PRSs may provide informative cancer risk stratification for male carriers of BRCA1/2 mutations that might enable these men and their physicians to make informed decisions on the type and timing of breast and prostate cancer risk management.


Subject(s)
Breast Neoplasms, Male/genetics , Genes, BRCA1 , Genes, BRCA2 , Multifactorial Inheritance , Mutation , Prostatic Neoplasms/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Case-Control Studies , Genetic Predisposition to Disease , Genetic Testing , Genome-Wide Association Study , Heterozygote , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Assessment/methods
16.
Breast Cancer Res Treat ; 161(1): 117-134, 2017 01.
Article in English | MEDLINE | ID: mdl-27796716

ABSTRACT

PURPOSE: Cis-acting regulatory SNPs resulting in differential allelic expression (DAE) may, in part, explain the underlying phenotypic variation associated with many complex diseases. To investigate whether common variants associated with DAE were involved in breast cancer susceptibility among BRCA1 and BRCA2 mutation carriers, a list of 175 genes was developed based of their involvement in cancer-related pathways. METHODS: Using data from a genome-wide map of SNPs associated with allelic expression, we assessed the association of ~320 SNPs located in the vicinity of these genes with breast and ovarian cancer risks in 15,252 BRCA1 and 8211 BRCA2 mutation carriers ascertained from 54 studies participating in the Consortium of Investigators of Modifiers of BRCA1/2. RESULTS: We identified a region on 11q22.3 that is significantly associated with breast cancer risk in BRCA1 mutation carriers (most significant SNP rs228595 p = 7 × 10-6). This association was absent in BRCA2 carriers (p = 0.57). The 11q22.3 region notably encompasses genes such as ACAT1, NPAT, and ATM. Expression quantitative trait loci associations were observed in both normal breast and tumors across this region, namely for ACAT1, ATM, and other genes. In silico analysis revealed some overlap between top risk-associated SNPs and relevant biological features in mammary cell data, which suggests potential functional significance. CONCLUSION: We identified 11q22.3 as a new modifier locus in BRCA1 carriers. Replication in larger studies using estrogen receptor (ER)-negative or triple-negative (i.e., ER-, progesterone receptor-, and HER2-negative) cases could therefore be helpful to confirm the association of this locus with breast cancer risk.


Subject(s)
Alleles , Breast Neoplasms/epidemiology , Breast Neoplasms/etiology , Genes, BRCA1 , Genes, BRCA2 , Heterozygote , Mutation , Biomarkers, Tumor , Chromosomes, Human, Pair 11 , Female , Gene Expression , Genetic Predisposition to Disease , Genetic Variation , Humans , Quantitative Trait Loci , Risk
17.
Breast Cancer Res Treat ; 160(1): 121-129, 2016 11.
Article in English | MEDLINE | ID: mdl-27624329

ABSTRACT

PURPOSE: Breast cancer-predisposing mutations PALB2 c.1027C>T (p.Gln343*) and PALB2 c.2167_2168delAT have each been observed multiple times in breast cancer families of Italian ancestry. More recently, the c2167_2168delAT mutation was identified in unrelated breast cancer cases of various ancestries. For each mutation, we investigated whether the origin was multiple mutational events (a "hot-spot") or a single event (a founder allele). METHODS: We genotyped and reconstructed haplotypes for 36 participants of Italian, Italian-American, Hispanic, and Nigerian ancestries, using seven short tandem repeat (STR) markers that covered 3 Megabases within and flanking PALB2 on chromosome 16. RESULTS: For PALB2 c.1027C>T, a shared haplotype with a minimum size of 150 kb was shared by all 19 carriers investigated, all of Italian ancestry. This result suggests that this allele arose as a single event in a shared ancestor. For PALB2 c.2167_2168delAT, all 12 carriers from American-Italian and Italian families shared a 1-Mb haplotype, the 3 Hispanic carriers shared a different haplotype of size 2 Mb, and the Nigerian carrier had different alleles at all 7 STR markers. These results suggest that PALB2 c.2167_2168delAT arose multiple times, but that within each population, PALB2 c.2167_2168delAT likely represents a single mutational event. CONCLUSION: We identified two PALB2 mutations that are founder alleles in Italian families, one of which is, independently, also a founder mutation in American-Hispanic breast cancers.


Subject(s)
Alleles , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Fanconi Anemia Complementation Group N Protein/genetics , Genetic Predisposition to Disease , Haplotypes , Mutation , Female , Founder Effect , Genetic Association Studies , Heterozygote , Humans , Italy , Microsatellite Repeats , Pedigree
18.
Breast Cancer Res ; 17: 61, 2015 Apr 25.
Article in English | MEDLINE | ID: mdl-25925750

ABSTRACT

INTRODUCTION: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers. METHODS: We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals. RESULTS: We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk. CONCLUSIONS: This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.


Subject(s)
Breast Neoplasms/genetics , Genes, BRCA2 , Genes, Mitochondrial , Heterozygote , Mutation , BRCA1 Protein/genetics , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Phylogeny , Risk
19.
Nat Genet ; 47(2): 164-71, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25581431

ABSTRACT

Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Neoplasms, Glandular and Epithelial/genetics , Ovarian Neoplasms/genetics , Polymorphism, Single Nucleotide , Adolescent , Adult , Alleles , Carcinoma, Ovarian Epithelial , Female , Genes, Reporter , Genotype , Heterozygote , Humans , Mutation , Quantitative Trait Loci , Risk , Young Adult
20.
Cancer Epidemiol Biomarkers Prev ; 24(1): 308-16, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25336561

ABSTRACT

BACKGROUND: BRCA1 and BRCA2 mutation carriers are at substantially increased risk for developing breast and ovarian cancer. The incomplete penetrance coupled with the variable age at diagnosis in carriers of the same mutation suggests the existence of genetic and nongenetic modifying factors. In this study, we evaluated the putative role of variants in many candidate modifier genes. METHODS: Genotyping data from 15,252 BRCA1 and 8,211 BRCA2 mutation carriers, for known variants (n = 3,248) located within or around 445 candidate genes, were available through the iCOGS custom-designed array. Breast and ovarian cancer association analysis was performed within a retrospective cohort approach. RESULTS: The observed P values of association ranged between 0.005 and 1.000. None of the variants was significantly associated with breast or ovarian cancer risk in either BRCA1 or BRCA2 mutation carriers, after multiple testing adjustments. CONCLUSION: There is little evidence that any of the evaluated candidate variants act as modifiers of breast and/or ovarian cancer risk in BRCA1 or BRCA2 mutation carriers. IMPACT: Genome-wide association studies have been more successful at identifying genetic modifiers of BRCA1/2 penetrance than candidate gene studies.


Subject(s)
Breast Neoplasms/genetics , Genes, BRCA1/physiology , Genes, BRCA2/physiology , Ovarian Neoplasms/genetics , Adult , Cohort Studies , Female , Humans , Mutation , Polymorphism, Single Nucleotide , Retrospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...