Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Nano ; 17(23): 23430-23441, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38011322

ABSTRACT

The mechanisms of action (MoA) have been proposed to further reduce the O2 dependence of photodynamic therapy (PDT) significantly. However, the triplet states of traditional photosensitizers are relatively short and also are easily deactivated by the quenching of H2O or O2. This is not conducive for the electron transfer in the photocatalytic process and poses a great obstacle to establish the MoA. Therefore, we selected and synthesized a zirconium(IV) complex (Zr(MesPDPPh)2) reported by Milsmann to address this issue. The specific symmetric and intact geometry endowed Zr(MesPDPPh)2 NPs with long-lived triplet excited state (τ = 350 µs), desired sensitized ability, and improved anti-interfering performance on O2, which was matched with the requirements of photoredox catalyst significantly. The results showed that while PDT (I) and PDT (II) could be achieved simultaneously by leveraging Zr(MesPDPPh)2 NPs, it also could be served as a rare example of thermally activated delayed fluorescence (TADF)-based photoredox catalyst to implement the MoA of PDT. It involved the oxidation of NADH and the establishment of catalytic cycle collaborating by O2 and cytochrome c (cyt c) in normoxia and hypoxia, respectively. As a result, the oxygen-free PDT and tumor-growth inhibition was realized.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photochemotherapy/methods , Fluorescence , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Neoplasms/drug therapy
2.
Chem Commun (Camb) ; 59(8): 1018-1021, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36598086

ABSTRACT

Two fluorescent probes (QM-S and QM-Se) featuring AIE properties were developed. The increased intracellular hypobromous acid (HOBr) in cardiomyocytes during MIRI was revealed with these probes. It was also observed that MIRI might be alleviated by combating oxidative stress, as well as inhibiting inflammation and ferroptosis, which could mediate oxidative stress.


Subject(s)
Myocardial Reperfusion Injury , Humans , Fluorescent Dyes , Myocytes, Cardiac , Bromates
SELECTION OF CITATIONS
SEARCH DETAIL