Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1331949, 2024.
Article in English | MEDLINE | ID: mdl-38390296

ABSTRACT

Duckweed is an aquatic model plant with tremendous potential in industrial and agricultural applications. Duckweed rarely flowers which significantly hinders the resource collection and heterosis utilization. Salicylic acid (SA) can significantly induce duckweed to flower; however, the underlying regulatory mechanisms remain largely unknown. In this work, transcriptome and proteome were conducted in parallel to examine the expression change of genes and proteins in Lemna gibba under SA treatment. A high-quality reference transcriptome was generated using Iso-Seq strategy, yielding 42,281 full-length transcripts. A total of 422, 423, and 417 differentially expressed genes (DEGs), as well as 213, 51, and 92 differentially expressed proteins (DEPs), were identified at flower induction, flower initiation, and flowering stages by ssRNA-seq and iTRAQ methods. Most DEGs and DEPs were only regulated at either the transcriptomic or proteomic level. Additionally, DEPs exhibited low expression correlations with the corresponding mRNAs, suggesting that post-transcriptional regulation plays a pivotal role in SA-induced flowering in L. gibba. Specifically, the genes related to photosynthesis, stress, and hormone metabolism were mainly regulated at the mRNA level, those associated with mitochondrial electron transport / ATP synthesis, nucleotide synthesis, and secondary metabolism were regulated at the protein level, while those related to redox metabolism were regulated at the mRNA and/or protein levels. The post-transcriptional regulation of genes relevant to hormone synthesis, transcription factors, and flowering was also extensively analyzed and discussed. This is the first study of integrative transcriptomic and proteomic analyses in duckweed, providing novel insights of post-transcriptional regulation in SA-induced flowering of L. gibba.

2.
Genome Biol ; 24(1): 289, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38098107

ABSTRACT

BACKGROUND: Metabolites play critical roles in regulating nutritional qualities of plants, thereby influencing their consumption and human health. However, the genetic basis underlying the metabolite-based nutrient quality and domestication of root and tuber crops remain largely unknown. RESULTS: We report a comprehensive study combining metabolic and phenotypic genome-wide association studies to dissect the genetic basis of metabolites in the storage root (SR) of cassava. We quantify 2,980 metabolic features in 299 cultivated cassava accessions. We detect 18,218 significant marker-metabolite associations via metabolic genome-wide association mapping and identify 12 candidate genes responsible for the levels of metabolites that are of potential nutritional importance. Me3GT, MeMYB4, and UGT85K4/UGT85K5, which are involved in flavone, anthocyanin, and cyanogenic glucoside metabolism, respectively, are functionally validated through in vitro enzyme assays and in vivo gene silencing analyses. We identify a cluster of cyanogenic glucoside biosynthesis genes, among which CYP79D1, CYP71E7b, and UGT85K5 are highly co-expressed and their allelic combination contributes to low linamarin content. We find MeMYB4 is responsible for variations in cyanidin 3-O-glucoside and delphinidin 3-O-rutinoside contents, thus controlling SR endothelium color. We find human selection affects quercetin 3-O-glucoside content and SR weight per plant. The candidate gene MeFLS1 is subject to selection during cassava domestication, leading to decreased quercetin 3-O-glucoside content and thus increased SR weight per plant. CONCLUSIONS: These findings reveal the genetic basis of cassava SR metabolome variation, establish a linkage between metabolites and agronomic traits, and offer useful resources for genetically improving the nutrition of cassava and other root crops.


Subject(s)
Genome-Wide Association Study , Manihot , Humans , Manihot/genetics , Domestication , Quercetin/metabolism , Glucosides , Nutrients
3.
Hortic Res ; 10(2): uhac275, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36789258

ABSTRACT

Adverse environmental factors severely affect crop productivity. Improving crop resistance to multiple stressors is an important breeding goal. Although CBFs/DREB1s extensively participate in plant resistance to abiotic stress, the common mechanism underlying CBFs/DREB1s that mediate resistance to multiple stressors remains unclear. Here, we show the common mechanism for MaDREB1F conferring cold and drought stress resistance in banana. MaDREB1F encodes a dehydration-responsive element binding protein (DREB) transcription factor with nuclear localization and transcriptional activity. MaDREB1F expression is significantly induced after cold, osmotic, and salt treatments. MaDREB1F overexpression increases banana resistance to cold and drought stress by common modulation of the protectant metabolite levels of soluble sugar and proline, activating the antioxidant system, and promoting jasmonate and ethylene syntheses. Transcriptomic analysis shows that MaDREB1F activates or alleviates the repression of jasmonate and ethylene biosynthetic genes under cold and drought conditions. Moreover, MaDREB1F directly activates the promoter activities of MaAOC4 and MaACO20 for jasmonate and ethylene syntheses, respectively, under cold and drought conditions. MaDREB1F also targets the MaERF11 promoter to activate MaACO20 expression for ethylene synthesis under drought stress. Together, our findings offer new insight into the common mechanism underlying CBF/DREB1-mediated cold and drought stress resistance, which has substantial implications for engineering cold- and drought-tolerant crops.

4.
Front Plant Sci ; 13: 924490, 2022.
Article in English | MEDLINE | ID: mdl-35755690

ABSTRACT

Flooding is one of the major environmental stresses that severely influence plant survival and development. However, the regulatory mechanisms underlying flooding stress remain largely unknown in Myricaria laxiflora, an endangered plant mainly distributed in the flood zone of the Yangtze River, China. In this work, transcriptome and proteome were performed in parallel in roots of M. laxiflora during nine time-points under the flooding and post-flooding recovery treatments. Overall, highly dynamic and stage-specific expression profiles of genes/proteins were observed during flooding and post-flooding recovery treatment. Genes related to auxin, cell wall, calcium signaling, and MAP kinase signaling were greatly down-regulated exclusively at the transcriptomic level during the early stages of flooding. Glycolysis and major CHO metabolism genes, which were regulated at the transcriptomic and/or proteomic levels with low expression correlations, mainly functioned during the late stages of flooding. Genes involved in reactive oxygen species (ROS) scavenging, mitochondrial metabolism, and development were also regulated exclusively at the transcriptomic level, but their expression levels were highly up-regulated upon post-flooding recovery. Moreover, the comprehensive expression profiles of genes/proteins related to redox, hormones, and transcriptional factors were also investigated. Finally, the regulatory networks of M. laxiflora in response to flooding and post-flooding recovery were discussed. The findings deepen our understanding of the molecular mechanisms of flooding stress and shed light on the genes and pathways for the preservation of M. laxiflora and other endangered plants in the flood zone.

5.
Front Nutr ; 9: 842693, 2022.
Article in English | MEDLINE | ID: mdl-35449540

ABSTRACT

Yellow roots are of higher nutritional quality and better appearance than white roots in cassava, a crucial tropical and subtropical root crop. In this work, two varieties with yellow and white cassava roots were selected to explore the mechanisms of color formation by using comparative metabolome and transcriptome analyses during seven developmental stages. Compared with the white-rooted cassava, anthocyanins, catechin derivatives, coumarin derivatives, and phenolic acids accumulated at higher levels in yellow-rooted cassava. Anthocyanins were particularly enriched and displayed different accumulation patterns during tuberous root development. This was confirmed by metabolic comparisons between five yellow-rooted and five white-rooted cassava accessions. The integrative metabolomic and transcriptomic analysis further revealed a coordinate regulation of 16 metabolites and 11 co-expression genes participating in anthocyanin biosynthesis, suggesting a vital role of anthocyanin biosynthesis in yellow pigmentation in cassava tuberous roots. In addition, two transcriptional factors, i.e., MeMYB5 and MeMYB42, were also identified to co-express with these anthocyanin biosynthesis genes. These findings expand our knowledge on the role of anthocyanin biosynthesis in cassava root color formation, and offer useful information for the genetic breeding of yellow-rooted cassava in the future.

6.
Genome Biol ; 22(1): 316, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34784936

ABSTRACT

BACKGROUND: Heterozygous genomes are widespread in outcrossing and clonally propagated crops. However, the variation in heterozygosity underlying key agronomic traits and crop domestication remains largely unknown. Cassava is a staple crop in Africa and other tropical regions and has a highly heterozygous genome. RESULTS: We describe a genomic variation map from 388 resequenced genomes of cassava cultivars and wild accessions. We identify 52 loci for 23 agronomic traits through a genome-wide association study. Eighteen allelic variations in heterozygosity for nine candidate genes are significantly associated with seven key agronomic traits. We detect 81 selective sweeps with decreasing heterozygosity and nucleotide diversity, harboring 548 genes, which are enriched in multiple biological processes including growth, development, hormone metabolisms and responses, and immune-related processes. Artificial selection for decreased heterozygosity has contributed to the domestication of the large starchy storage root of cassava. Selection for homozygous GG allele in MeTIR1 during domestication contributes to increased starch content. Selection of homozygous AA allele in MeAHL17 is associated with increased storage root weight and cassava bacterial blight (CBB) susceptibility. We have verified the positive roles of MeTIR1 in increasing starch content and MeAHL17 in resistance to CBB by transient overexpression and silencing analysis. The allelic combinations in MeTIR1 and MeAHL17 may result in high starch content and resistance to CBB. CONCLUSIONS: This study provides insights into allelic variation in heterozygosity associated with key agronomic traits and cassava domestication. It also offers valuable resources for the improvement of cassava and other highly heterozygous crops.


Subject(s)
Domestication , Genetic Variation , Manihot/genetics , Sequence Analysis, DNA , Chromosome Mapping , Crops, Agricultural/genetics , DNA-Binding Proteins/genetics , Genome, Plant , Genome-Wide Association Study , Nuclear Proteins/genetics , Phenotype , Phylogeny , Plant Proteins/genetics
7.
Biochem Genet ; 59(6): 1599-1616, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34009493

ABSTRACT

Plant 14-3-3 proteins play key roles in regulating growth, development, and stress responses. However, little is known about this gene family in papaya (Carica papaya L.). We characterized eight 14-3-3 genes from the papaya genome and designed them as CpGRF1-8. Based on phylogenetic, conserved motif, and gene structure analyses, papaya CpGRFs were divided into ε and non-ε groups. Expression analysis showed differential and class-specific transcription patterns in different organs. Quantitative real-time polymerase chain reaction analysis showed that most CpGRFs had large changes in expression during fruit development and ripening. This indicated that the CpGRFs were involved in regulating fruit development and ripening. Significant expression changes occurred after cold, salt, and drought treatments in papaya seedlings, indicating that CpGRFs were also involved in signaling responses to abiotic stress. These results provide a transcription profile of 14-3-3 genes in organs, during fruit development and ripening and in response to stress. Some highly expressed, fruit-specific, and stress-responsive candidate CpGRFs will be identified for further genetic improvement of papayas.


Subject(s)
Carica , Carica/genetics , Carica/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
9.
J Exp Bot ; 71(22): 7003-7017, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32777039

ABSTRACT

Cassava (Manihot esculenta) is an important starchy root crop that provides food for millions of people worldwide, but little is known about the regulation of the development of its tuberous root at the multi-omics level. In this study, the transcriptome, proteome, and metabolome were examined in parallel at seven time-points during the development of the tuberous root from the early to late stages of its growth. Overall, highly dynamic and stage-specific changes in the expression of genes/proteins were observed during development. Cell wall and auxin genes, which were regulated exclusively at the transcriptomic level, mainly functioned during the early stages. Starch biosynthesis, which was controlled at both the transcriptomic and proteomic levels, was mainly activated in the early stages and was greatly restricted during the late stages. Two main branches of lignin biosynthesis, coniferyl alcohol and sinapyl alcohol, also functioned during the early stages of development at both the transcriptomic and proteomic levels. Metabolomic analysis further supported the stage-specific roles of particular genes/proteins. Metabolites related to lignin and flavonoid biosynthesis showed high abundance during the early stages, those related to lipids exhibited high abundance at both the early and middle stages, while those related to amino acids were highly accumulated during the late stages. Our findings provide a comprehensive resource for broadening our understanding of tuberous root development and will facilitate future genetic improvement of cassava.


Subject(s)
Manihot , Gene Expression Regulation, Plant , Manihot/genetics , Manihot/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteome , Proteomics , Transcriptome
10.
Plant Physiol Biochem ; 155: 512-522, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32836197

ABSTRACT

Duckweed is a simple aquatic floating plant having great potential in sewage treatment and bioenergy production. Duckweed rarely flowers in nature, which greatly limits its germplasm collection, conservation, and heterosis usage. Salicylic acid (SA) can efficiently induce flowering of duckweed (e.g., Lemna gibba); however, the related genes and regulatory networks remain unclear. In this work, we demonstrated that L. gibba flowering induced by SA was photoperiod-dependent, stress-involved, and abscisic acid (ABA)-disrupted. Totally 202, 78, and 413 differentially expressed (DE) genes were up-regulated, while 429, 72, and 307 were down-regulated at flower induction, flower initiation, and flowering stages, respectively. At the flower induction stage, the down-regulated genes were mainly involved in cell wall, auxin and ABA, light reaction, and abiotic stress, while the up-regulated genes were involved in development, brassinosteroid, major CHO metabolism, and redox. At the flower initiation stage, the down-regulated genes were enriched in light reaction and lipid metabolism, whereas the up-regulated genes were enriched in starch degradation and Ca2+ signaling. At the flowering stage, the down-regulated genes were significantly enriched in photosynthesis, gibberellic acid, starch synthesis, nitrogen metabolism, and redox, while the up-regulated genes were enriched in cell wall, jasmonic acid, secondary metabolism, and Ca2+ signaling. Besides, 46 transcription factors and 13 flowering-related DE genes were identified. Finally, a possible floral pathway, where LgTEM1, LgSVP, and LgFT1 might play critical roles in SA-induced flowering in L. gibba, was discussed. These findings provide a useful foundation for further investigation of genes and regulatory networks of SA-induced flowering in duckweed.


Subject(s)
Araceae/genetics , Flowers/physiology , Gene Regulatory Networks , Salicylic Acid/pharmacology , Araceae/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Photoperiod
11.
Mol Biol Rep ; 47(8): 5997-6007, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32710389

ABSTRACT

Heat shock factors (HSFs) play crucial roles in various plant stress responses. However, the current knowledge about HSFs in cassava, an important crop, is still insufficient. In this research, we identified 32 cassava HSF genes (MeHSFs) and clustered them into three groups (A, B, C) based on phylogenetic analysis and structural characteristics. Conserved motif analyses showed that MeHSFs display domains characteristic to HSF transcription factors. Gene structure analyses suggested that 29 MeHSFs contained only two exons. All identified 32 cassava MeHSFs were distributed on 13 chromosomes. Their expression profiles revealed that the different MeHSFs were expressed differentially in different tissues, most high expression genes belonged to group A. The similar MeHSFs were up-regulated after treatment with both PEG and abscisic acid (ABA), which implied that these MeHSFs may participate in resistance to simulated drought stress associated with the ABA signaling pathway. In addition, several MeHSFs were induced during postharvest physiological deterioration (PPD) in cassava. Our results provided basic but important knowledge for future gene function analysis of MeHSFs toward efforts in improving tolerance to abiotic stress and PPD in cassava.


Subject(s)
Droughts , Genes, Plant , Heat Shock Transcription Factors/biosynthesis , Manihot/genetics , Plant Proteins/biosynthesis , Stress, Physiological/genetics , Abscisic Acid/pharmacology , Amino Acid Motifs , Amino Acid Sequence , Chromosome Mapping , Chromosomes, Plant/genetics , Exons/genetics , Food Storage , Gene Expression Regulation, Plant/drug effects , Heat Shock Transcription Factors/chemistry , Heat Shock Transcription Factors/genetics , Introns/genetics , Manihot/metabolism , Organ Specificity , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Roots/metabolism , Polyethylene Glycols/pharmacology , Sequence Homology, Amino Acid , Species Specificity
12.
Physiol Mol Biol Plants ; 26(1): 133-142, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32158126

ABSTRACT

Lemna gibba is a species of duckweed showing great potential in bioenergy production and wastewater treatment. However, the relevant transcriptomic and genomic resources are very limited for this species, which dramatically hinders its genetic diversity and genome mapping researches. In this work, ~ 233.5 million clean reads were generated from L. gibba by Illumina paired-end sequencing, and subsequently they were de novo assembled into 131,870 unigenes, of which 61,622 were annotated and 43,319 were expressed with Fragments Per Kilobase of transcript per Million fragments mapped (FPKM) > 5. In total, 19,297 simple sequence repeats (SSRs) were identified from 15,261 SSR-containing unigenes. Dinucleotide (78.4%) were the most abundant SSRs, followed by tri- (14.9%), tetra- (4.1%), and penta-nucleotides (1.5%). The top three motifs were AG/CT (69.9%), AC/GT (6.5%), and ATC/ATG (4.9%). Further analysis revealed that the presence of SSR motif was independent of the expression level for a given gene. Based on the sequence of these SSR-containing unigenes, a total of 10,292 SSR markers were developed, of which only 2671 were further retained after removing those derived from unannotated or extra-low expressed (e.g., FPKM ≤ 5) unigenes. Finally, a subset of 70 SSR markers was randomly selected and examined in nine diverse L. gibba genotypes for the PCR amplification and polymorphism, as well as in other duckweed species for the inter-specifically amplifiability. This work is the first report on the transcriptome-based large-scale SSR markers development and analysis in L. gibba. The transcriptome generated and the SSR markers developed in this work will provide a valuable resource for genetic diversity assessment in L. gibba and also for species relationship investigation in Lemnaceae family.

13.
BMC Genomics ; 21(1): 212, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32138656

ABSTRACT

BACKGROUND: Salt significantly depresses the growth and development of the greater duckweed, Spirodela polyrhiza, a model species of floating aquatic plants. Physiological responses of this plant to salt stress have been characterized, however, the roles of long noncoding RNAs (lncRNAs) remain unknown. RESULTS: In this work, totally 2815 novel lncRNAs were discovered in S. polyrhiza by strand-specific RNA sequencing, of which 185 (6.6%) were expressed differentially under salinity condition. Co-expression analysis indicated that the trans-acting lncRNAs regulated their co-expressed genes functioning in amino acid metabolism, cell- and cell wall-related metabolism, hormone metabolism, photosynthesis, RNA transcription, secondary metabolism, and transport. In total, 42 lncRNA-mRNA pairs that might participate in cis-acting regulation were found, and these adjacent genes were involved in cell wall, cell cycle, carbon metabolism, ROS regulation, hormone metabolism, and transcription factor. In addition, the lncRNAs probably functioning as miRNA targets were also investigated. Specifically, TCONS_00033722, TCONS_00044328, and TCONS_00059333 were targeted by a few well-studied salt-responsive miRNAs, supporting the involvement of miRNA and lncRNA interactions in the regulation of salt stress responses. Finally, a representative network of lncRNA-miRNA-mRNA was proposed and discussed to participate in duckweed salt stress via auxin signaling. CONCLUSIONS: This study is the first report on salt-responsive lncRNAs in duckweed, and the findings will provide a solid foundation for in-depth functional characterization of duckweed lncRNAs in response to salt stress.


Subject(s)
Araceae/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/physiology , Salt Stress/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , RNA, Messenger , Sequence Analysis, RNA
14.
Plant Physiol ; 182(1): 626-639, 2020 01.
Article in English | MEDLINE | ID: mdl-31694900

ABSTRACT

Temperature has a large impact on plant immune responses. Earlier studies identified intracellular immune receptor nucleotide-binding leucine-rich repeat (NLR) genes and salicylic acid (SA) as targets of high-temperature inhibition of plant immunity. Here, we report that moderately low temperature enhances immunity to the bacterial pathogen Pseudomonas syringae in Arabidopsis (Arabidopsis thaliana). This enhancement is dependent on SA signaling and is accompanied by up-regulation of multiple SA biosynthesis and signaling genes at lower temperature. SA signaling is repressed by jasmonic acid and ethylene at both normal and low temperatures. The inhibition of SA biosynthesis by ethylene, while mainly through ISOCHORISMATE SYNTHASE1/SALICYLIC ACID-INDUCTION DEFICIENT2 (ICS1/SID2) at normal temperature, is through ENHANCED DISEASE SUSCEPTIBILITY5 (EDS5)/SID1, ICS2, and ICS1/SID2 at lower temperature. The repression by ethylene is mediated by a direct regulation of the ethylene response transcription factor ETHYLENE INSENSITIVE3 (EIN3) on multiple SA biosynthesis and signaling genes. Thus, low temperature enhances the SA pathway to promote immunity and at the same time uses ethylene to repress multiple SA regulators to achieve fine-tuned immune responses.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Ethylenes/pharmacology , Plant Immunity/physiology , Salicylic Acid/metabolism , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Cyclopentanes/pharmacology , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Oxylipins/pharmacology , Plant Immunity/genetics , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/microbiology , Pseudomonas syringae/pathogenicity , Temperature
15.
Genes (Basel) ; 10(10)2019 09 24.
Article in English | MEDLINE | ID: mdl-31554307

ABSTRACT

Duckweeds are a family of freshwater angiosperms with morphology reduced to fronds and propagation by vegetative budding. Unlike other angiosperm plants such as Arabidopsis and rice that have physical barriers between their photosynthetic organs and soils, the photosynthetic organs of duckweeds face directly to their nutrient suppliers (waters), therefore, their responses to salinity may be distinct. In this research, we found that the duckweed Spirodela polyrhiza L. accumulated high content of sodium and reduced potassium and calcium contents in large amounts under salt stress. Fresh weight, Rubisco and AGPase activities, and starch content were significantly decreaseded in the first day but recovered gradually in the following days and accumulated more starch than control from Day 3 to Day 5 when treated with 100 mM and 150 mM NaCl. A total of 2156 differentially expressed genes were identified. Overall, the genes related to ethylene metabolism, major CHO degradation, lipid degradation, N-metabolism, secondary metabolism of flavonoids, and abiotic stress were significantly increased, while those involved in cell cycle and organization, cell wall, mitochondrial electron transport of ATP synthesis, light reaction of photosynthesis, auxin metabolism, and tetrapyrrole synthesis were greatly inhibited. Moreover, salt stress also significantly influenced the expression of transcription factors that are mainly involved in abiotic stress and cell differentiation. However, most of the osmosensing calcium antiporters (OSCA) and the potassium inward channels were downregulated, Na+/H+ antiporters (SOS1 and NHX) and a Na+/Ca2+ exchanger were slightly upregulated, but most of them did not respond significantly to salt stress. These results indicated that the ion homeostasis was strongly disturbed. Finally, the shared and distinct regulatory networks of salt stress responses between duckweeds and other plants were intensively discussed. Taken together, these findings provide novel insights into the underlying mechanisms of salt stress response in duckweeds, and can be served as a useful foundation for salt tolerance improvement of duckweeds for the application in salinity conditions.


Subject(s)
Araceae/genetics , Salt Stress/genetics , Araceae/metabolism , Base Sequence , Calcium/metabolism , Cell Wall/genetics , Gene Expression Regulation, Plant , Genes, Plant , Homeostasis , Plant Growth Regulators/biosynthesis , Plant Growth Regulators/genetics , Plant Proteins/genetics , Potassium/metabolism , Sodium/metabolism , Transcription Factors/genetics , Transcriptome
16.
Nat Plants ; 5(8): 810-821, 2019 08.
Article in English | MEDLINE | ID: mdl-31308504

ABSTRACT

Banana cultivars (Musa ssp.) are diploid, triploid and tetraploid hybrids derived from Musa acuminata and Musa balbisiana. We presented a high-quality draft genome assembly of M. balbisiana with 430 Mb (87%) assembled into 11 chromosomes. We identified that the recent divergence of M. acuminata (A-genome) and M. balbisiana (B-genome) occurred after lineage-specific whole-genome duplication, and that the B-genome may be more sensitive to the fractionation process compared to the A-genome. Homoeologous exchanges occurred frequently between A- and B-subgenomes in allopolyploids. Genomic variation within progenitors resulted in functional divergence of subgenomes. Global homoeologue expression dominance occurred between subgenomes of the allotriploid. Gene families related to ethylene biosynthesis and starch metabolism exhibited significant expansion at the pathway level and wide homoeologue expression dominance in the B-subgenome of the allotriploid. The independent origin of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) homoeologue gene pairs and tandem duplication-driven expansion of ACO genes in the B-subgenome contributed to rapid and major ethylene production post-harvest in allotriploid banana fruits. The findings of this study provide greater context for understanding fruit biology, and aid the development of tools for breeding optimal banana cultivars.


Subject(s)
Evolution, Molecular , Genome, Plant , Musa/genetics , Ethylenes/biosynthesis , Genetic Variation , Molecular Sequence Annotation , Musa/metabolism
17.
Int J Mol Sci ; 20(11)2019 Jun 03.
Article in English | MEDLINE | ID: mdl-31163686

ABSTRACT

The class III peroxidase (POD) enzymes participate in plant development, hormone signaling, and stress responses. However, little is known about the POD family in cassava. Here, we identified 91 cassava POD genes (MePODs) and classified them into six subgroups using phylogenetic analysis. Conserved motif analysis demonstrated that all MePOD proteins have typical peroxidase domains, and gene structure analysis showed that MePOD genes have between one and nine exons. Duplication pattern analysis suggests that tandem duplication has played a role in MePOD gene expansion. Comprehensive transcriptomic analysis revealed that MePOD genes in cassava are involved in the drought response and postharvest physiological deterioration. Several MePODs underwent transcriptional changes after various stresses and related signaling treatments were applied. In sum, we characterized the POD family in cassava and uncovered the transcriptional control of POD genes in response to various stresses and postharvest physiological deterioration conditions. These results can be used to identify potential target genes for improving the stress tolerance of cassava crops.


Subject(s)
Manihot/genetics , Multigene Family , Peroxidases/genetics , Chromosome Mapping , Droughts , Evolution, Molecular , Gene Duplication , Gene Expression Regulation, Plant , Genome, Plant , Genomics/methods , Genotype , Manihot/classification , Manihot/metabolism , Phylogeny , Plant Development/genetics , Stress, Physiological
18.
Plant Physiol Biochem ; 140: 96-104, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31085451

ABSTRACT

Melatonin (MT) plays important roles in mediating plant responses to abiotic stresses such as drought. lncRNAs also play crucial roles in regulating responses to drought stress, however, their roles in MT-mediated drought stress responses in plants remain largely unknown. In this study, a total of 1405 high-confidence lncRNAs were identified in leaves of cassava, an important food crop in tropical and sub-tropical regions, using strand-specific RNA-seq technology. Of which, 185 were differentially expressed between polyethylene glycol (PEG) or MT treatment and the control condition. Trans-regulatory co-expression network revealed that MT-uniquely-responsive lncRNAs were mainly involved in tetrapyrrole synthesis, cytochrome P450, and cell wall modification; PEG-uniquely-responsive lncRNAs mainly participated in RNA regulation of transcription, calcium signaling, mitochondrial electron transport/ATP synthesis, hormone metabolism, and transport; and MT and PEG both-responsive lncRNAs were mainly involved in light reaction, light signaling, FA synthesis and FA elongation, secondary metabolism, and tetrapyrrole synthesis. In addition, 28 lncRNA-mRNA pairs referred to cis-acting regulation were identified, and these lncRNAs regulated the expression of their neighboring genes mainly through calcium signaling, RNA regulation of transcription, ABA and ethylene metabolism, and redox homeostasis. Besides, 78 lncRNAs (especially TCONS_00003360, TCONS_00015102, and TCONS_00149293) responsive to MT and/or PEG treatment were identified as putative targets of cassava known miRNAs. These findings provide a comprehensive view of the lncRNAs and their roles in response to MT and drought stress in cassava, which will enable in-depth functional analyses in the near future.


Subject(s)
Droughts , Manihot/drug effects , Manihot/metabolism , Melatonin/pharmacology , RNA, Long Noncoding/genetics , Gene Expression Regulation, Plant/drug effects , Polyethylene Glycols/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Int J Mol Sci ; 20(10)2019 May 19.
Article in English | MEDLINE | ID: mdl-31109136

ABSTRACT

The morphological development of the leaf greatly influences plant architecture and crop yields. The maize leaf is composed of a leaf blade, ligule and sheath. Although extensive transcriptional profiling of the tissues along the longitudinal axis of the developing maize leaf blade has been conducted, little is known about the transcriptional dynamics in sheath tissues, which play important roles in supporting the leaf blade. Using a comprehensive transcriptome dataset, we demonstrated that the leaf sheath transcriptome dynamically changes during maturation, with the construction of basic cellular structures at the earliest stages of sheath maturation with a transition to cell wall biosynthesis and modifications. The transcriptome again changes with photosynthesis and lignin biosynthesis at the last stage of sheath tissue maturation. The different tissues of the maize leaf are highly specialized in their biological functions and we identified 15 genes expressed at significantly higher levels in the leaf sheath compared with their expression in the leaf blade, including the BOP2 homologs GRMZM2G026556 and GRMZM2G022606, DOGT1 (GRMZM2G403740) and transcription factors from the B3 domain, C2H2 zinc finger and homeobox gene families, implicating these genes in sheath maturation and organ specialization.


Subject(s)
Gene Expression Regulation, Plant , Plant Leaves/genetics , Zea mays/genetics , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genes, Plant , Plant Leaves/growth & development , Plant Proteins/genetics , Transcriptome , Zea mays/growth & development
20.
J Genet ; 982019 03.
Article in English | MEDLINE | ID: mdl-30945695

ABSTRACT

Ionizing radiations (IRs) are widespread damaging stresses to plant growth and development. However, the regulatory networks underlying the mechanisms of responses to IRs remains poorly understood. Here, a set of publicly available transcriptomic data (conducted by Van Hoeck et al. 2015a), in which Lemna minor plants were exposed to a series of doses of gamma, beta and uranium treatments was used to perform gene coexpression network analysis. Overall, the genes involved in DNA synthesis and chromatin structure, light signalling, photosynthesis, and carbohydrate metabolism were commonly responsive to gamma, beta and uranium treatments. Genes related to anthocyanin accumulation and trichome differentiation were specifically downregulated, andgenes related to nitrogen and phosphate nutrition, cell vesicle transport, mitochondrial electron transport and ATP synthesis were specifically upregulated in response to uranium treatment. While genes involved in DNA damage and repair, RNA processing and RNA binding were specifically downregulated and genes involved in calcium signalling, redox and degradation of carbohydrate metabolism were specifically upregulated responding to gamma radiation. These findings revealed both dose-dependent and typespecific networks responding to different IRs in L. minor, and can be served as a useful resource to better understand the mechanisms of responses to different IRs in other plants.


Subject(s)
Araceae/genetics , Araceae/radiation effects , Databases, Factual , Gamma Rays , Gene Regulatory Networks/radiation effects , Plant Proteins/genetics , Uranium , Araceae/growth & development , Beta Particles , Dose-Response Relationship, Radiation , Gene Expression Profiling , Gene Expression Regulation, Plant , Sequence Analysis, RNA , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...