Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 6955, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376282

ABSTRACT

Enteropeptidase (EP) initiates intestinal digestion by proteolytically processing trypsinogen, generating catalytically active trypsin. EP dysfunction causes a series of pancreatic diseases including acute necrotizing pancreatitis. However, the molecular mechanisms of EP activation and substrate recognition remain elusive, due to the lack of structural information on the EP heavy chain. Here, we report cryo-EM structures of human EP in inactive, active, and substrate-bound states at resolutions from 2.7 to 4.9 Å. The EP heavy chain was observed to clamp the light chain with CUB2 domain for substrate recognition. The EP light chain N-terminus induced a rearrangement of surface-loops from inactive to active conformations, resulting in activated EP. The heavy chain then served as a hinge for light-chain conformational changes to recruit and subsequently cleave substrate. Our study provides structural insights into rearrangements of EP surface-loops and heavy chain dynamics in the EP catalytic cycle, advancing our understanding of EP-associated pancreatitis.


Subject(s)
Enteropeptidase , Trypsinogen , Humans , Enteropeptidase/chemistry , Cryoelectron Microscopy , Trypsin
2.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-34871179

ABSTRACT

The radial spoke (RS) heads of motile cilia and flagella contact projections of the central pair (CP) apparatus to coordinate motility, but the morphology is distinct for protozoa and metazoa. Here we show the murine RS head is compositionally distinct from that of Chlamydomonas Our reconstituted murine RS head core complex consists of Rsph1, Rsph3b, Rsph4a, and Rsph9, lacking Rsph6a and Rsph10b, whose orthologs exist in the protozoan RS head. We resolve its cryo-electron microscopy (cryo-EM) structure at 3.2-Å resolution. Our atomic model further reveals a twofold symmetric brake pad-shaped structure, in which Rsph4a and Rsph9 form a compact body extended laterally with two long arms of twisted Rsph1 ß-sheets and potentially connected dorsally via Rsph3b to the RS stalk. Furthermore, our modeling suggests that the core complex contacts the periodic CP projections either rigidly through its tooth-shaped Rsph4a regions or elastically through both arms for optimized RS-CP interactions and mechanosignal transduction.


Subject(s)
Axoneme/chemistry , Axoneme/metabolism , Cryoelectron Microscopy/methods , Animals , Antigens, Surface , Chlamydomonas , Cilia , Cytoskeletal Proteins/chemistry , DNA-Binding Proteins/chemistry , Epitopes , Flagella , HEK293 Cells , Humans , Mice , Models, Molecular , Mutation , Protein Conformation , Recombinant Proteins
3.
Nat Commun ; 12(1): 6173, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702852

ABSTRACT

The proteasome, the primary protease for ubiquitin-dependent proteolysis in eukaryotes, is usually found as a mixture of 30S, 26S, and 20S complexes. These complexes have common catalytic sites, which makes it challenging to determine their distinctive roles in intracellular proteolysis. Here, we chemically synthesize a panel of homogenous ubiquitinated proteins, and use them to compare 20S and 26S proteasomes with respect to substrate selection and peptide-product generation. We show that 20S proteasomes can degrade the ubiquitin tag along with the conjugated substrate. Ubiquitin remnants on branched peptide products identified by LC-MS/MS, and flexibility in the 20S gate observed by cryo-EM, reflect the ability of the 20S proteasome to proteolyze an isopeptide-linked ubiquitin-conjugate. Peptidomics identifies proteasome-trapped ubiquitin-derived peptides and peptides of potential 20S substrates in Hi20S cells, hypoxic cells, and human failing-heart. Moreover, elevated levels of 20S proteasomes appear to contribute to cell survival under stress associated with damaged proteins.


Subject(s)
Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism , Cell Hypoxia , Cell Survival , Heart Failure/metabolism , Heart Failure/pathology , Humans , Peptides/chemistry , Peptides/metabolism , Protein Conformation , Proteolysis , Substrate Specificity , Ubiquitin/chemistry , Ubiquitinated Proteins/chemistry , Ubiquitinated Proteins/metabolism , Ubiquitination
4.
Elife ; 102021 09 01.
Article in English | MEDLINE | ID: mdl-34467854

ABSTRACT

Human calcium-sensing receptor (CaSR) is a G-protein-coupled receptor that maintains Ca2+ homeostasis in serum. Here, we present the cryo-electron microscopy structures of the CaSR in the inactive and agonist+PAM bound states. Complemented with previously reported structures of CaSR, we show that in addition to the full inactive and active states, there are multiple intermediate states during the activation of CaSR. We used a negative allosteric nanobody to stabilize the CaSR in the fully inactive state and found a new binding site for Ca2+ ion that acts as a composite agonist with L-amino acid to stabilize the closure of active Venus flytraps. Our data show that agonist binding leads to compaction of the dimer, proximity of the cysteine-rich domains, large-scale transitions of seven-transmembrane domains, and inter- and intrasubunit conformational changes of seven-transmembrane domains to accommodate downstream transducers. Our results reveal the structural basis for activation mechanisms of CaSR and clarify the mode of action of Ca2+ ions and L-amino acid leading to the activation of the receptor.


Subject(s)
Receptors, Calcium-Sensing/metabolism , Calcium/metabolism , Cryoelectron Microscopy , Dimerization , Homeostasis , Humans , Models, Molecular , Protein Binding , Protein Conformation , Receptors, Calcium-Sensing/agonists , Receptors, Calcium-Sensing/chemistry , Signal Transduction , Tryptophan/analogs & derivatives
5.
Nat Commun ; 12(1): 739, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33531497

ABSTRACT

The proteasome activator PA28αß affects MHC class I antigen presentation by associating with immunoproteasome core particles (iCPs). However, due to the lack of a mammalian PA28αß-iCP structure, how PA28αß regulates proteasome remains elusive. Here we present the complete architectures of the mammalian PA28αß-iCP immunoproteasome and free iCP at near atomic-resolution by cryo-EM, and determine the spatial arrangement between PA28αß and iCP through XL-MS. Our structures reveal a slight leaning of PA28αß towards the α3-α4 side of iCP, disturbing the allosteric network of the gatekeeper α2/3/4 subunits, resulting in a partial open iCP gate. We find that the binding and activation mechanism of iCP by PA28αß is distinct from those of constitutive CP by the homoheptameric TbPA26 or PfPA28. Our study sheds lights on the mechanism of enzymatic activity stimulation of immunoproteasome and suggests that PA28αß-iCP has experienced profound remodeling during evolution to achieve its current level of function in immune response.


Subject(s)
Cryoelectron Microscopy/methods , Proteasome Endopeptidase Complex/immunology , Proteasome Endopeptidase Complex/ultrastructure , Antigen Presentation/immunology , Histocompatibility Antigens Class I/immunology , Humans , Proteasome Endopeptidase Complex/metabolism
6.
Mol Cell ; 73(6): 1150-1161.e6, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30792173

ABSTRACT

The 26S proteasome is the ATP-dependent protease responsible for regulating the proteome of eukaryotic cells through degradation of mainly ubiquitin-tagged substrates. In order to understand how proteasome responds to ubiquitin signal, we resolved an ensemble of cryo-EM structures of proteasome in the presence of K48-Ub4, with three of them resolved at near-atomic resolution. We identified a conformation with stabilized ubiquitin receptors and a previously unreported orientation of the lid, assigned as a Ub-accepted state C1-b. We determined another structure C3-b with localized K48-Ub4 to the toroid region of Rpn1, assigned as a substrate-processing state. Our structures indicate that tetraUb induced conformational changes in proteasome could initiate substrate degradation. We also propose a CP gate-opening mechanism involving the propagation of the motion of the lid to the gate through the Rpn6-α2 interaction. Our results enabled us to put forward a model of a functional cycle for proteasomes induced by tetraUb and nucleotide.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitin/metabolism , Allosteric Regulation , Animals , Binding Sites , Cryoelectron Microscopy , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Humans , Models, Molecular , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/ultrastructure , Protein Binding , Protein Conformation , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Structure-Activity Relationship , Ubiquitin/ultrastructure , Ubiquitination
7.
Cell Discov ; 5: 4, 2019.
Article in English | MEDLINE | ID: mdl-30652025

ABSTRACT

Coxsackievirus A10 (CV-A10) belongs to the Enterovirus species A and is a causative agent of hand, foot, and mouth disease. Here we present cryo-EM structures of CV-A10 mature virion and native empty particle (NEP) at 2.84 and 3.12 Å, respectively. Our CV-A10 mature virion structure reveals a density corresponding to a lipidic pocket factor of 18 carbon atoms in the hydrophobic pocket formed within viral protein 1. By structure-guided high-throughput drug screening and subsequent verification in cell-based infection-inhibition assays, we identified four compounds that inhibited CV-A10 infection in vitro. These compounds represent a new class of anti-enteroviral drug leads. Notably, one of the compounds, ICA135, also exerted broad-spectrum inhibitory effects on a number of representative viruses from all four species (A-D) of human enteroviruses. Our findings should facilitate the development of broadly effective drugs and vaccines for enterovirus infections.

8.
Sci Rep ; 8(1): 17405, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30479350

ABSTRACT

Methylation of histone H3 lysine 4 (H3K4) is catalyzed by the multi-component COMPASS or COMPASS-like complex, which is highly conserved from yeast to human, and plays essential roles in gene expression and transcription, cell cycle progression, and DNA repair. Here we present a cryo-EM map of the complete S. cerevisiae COMPASS complex. Through tag or Fab labeling strategy combined with cryo-EM 3D reconstruction and cross-linking and mass spectrometry (XL-MS) analysis, we uncovered new information on the subunit arrangement: Cps50, Cps35, and Cps30 were determined to group together to form the face region in the head of the complex, and Cps40 and the N-terminal portion of Set1 reside on the top of the head. Our map reveals the location of the active center and a canyon in the back of the head. Together, our study provides the first snapshot of the complete architecture of yeast COMPASS and a picture of its subunit interaction network, which could facilitate our understanding of the COMPASS machinery and its functionality.


Subject(s)
DNA-Binding Proteins/chemistry , Histone-Lysine N-Methyltransferase/chemistry , Protein Multimerization , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae
9.
Cell Res ; 27(3): 373-385, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28106073

ABSTRACT

The 26S proteasome is an ATP-dependent dynamic 2.5 MDa protease that regulates numerous essential cellular functions through degradation of ubiquitinated substrates. Here we present a near-atomic-resolution cryo-EM map of the S. cerevisiae 26S proteasome in complex with ADP-AlFx. Our biochemical and structural data reveal that the proteasome-ADP-AlFx is in an activated state, displaying a distinct conformational configuration especially in the AAA-ATPase motor region. Noteworthy, this map demonstrates an asymmetric nucleotide binding pattern with four consecutive AAA-ATPase subunits bound with nucleotide. The remaining two subunits, Rpt2 and Rpt6, with empty or only partially occupied nucleotide pocket exhibit pronounced conformational changes in the AAA-ATPase ring, which may represent a collective result of allosteric cooperativity of all the AAA-ATPase subunits responding to ATP hydrolysis. This collective motion of Rpt2 and Rpt6 results in an elevation of their pore loops, which could play an important role in substrate processing of proteasome. Our data also imply that the nucleotide occupancy pattern could be related to the activation status of the complex. Moreover, the HbYX tail insertion may not be sufficient to maintain the gate opening of 20S core particle. Our results provide new insights into the mechanisms of nucleotide-driven allosteric cooperativity of the complex and of the substrate processing by the proteasome.


Subject(s)
Adenosine Diphosphate/chemistry , Cryoelectron Microscopy , Proteasome Endopeptidase Complex/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Saccharomyces cerevisiae/metabolism , Adenosine Diphosphate/metabolism , Models, Molecular , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Conformation , Protein Subunits/chemistry , Saccharomyces cerevisiae Proteins/chemistry
10.
Anticancer Agents Med Chem ; 17(4): 576-589, 2017.
Article in English | MEDLINE | ID: mdl-27671299

ABSTRACT

BACKGROUND: Cancer is one of the most serious clinical problems worldwide, and considerable efforts have been devoted to discovering therapeutic agents with novel modes of action. Natural and synthetic coumarin derivatives have attracted intense research interest due to their diverse structural features and remarkable array of biological properties. OBJECTIVE: In the present study, we synthesized a series of 4-MU derivatives containing urea-piperazine and thioureapiperazine moieties and evaluated their antitumor activities to find efficacy antitumor drugs. METHOD: Cell proliferation, apoptosis, cell cycle, the generation of reactive oxygen species and calcium were measured using MTT assay and flow cytometry, respectively. The expression of apoptosis- and proliferation-related proteins was determined by western blotting. The effect of 4l on apoptosis-related mRNA expression in NCI-H460 cells was detected by RT-PCR. RESULTS: Most of the target compounds exhibited potential anticancer activities against tested cancer cells but had low cytotoxicity to normal cells. Compound 4l inhibited the growth and proliferation of NCI-H460 cells and resulted in apoptosis. Successive studies conducted with 4l in NCI-H460 cells demonstrated that this compound induced the intracellular reactive oxygen species generation and calcium overload, suppressed nuclear factor-κB (NF-κB) activity and regulated anti- and pro-apoptotic proteins. In addition, compound 4l effectively arrested NCI-H460 cells in G2 phase and altered the cell cycle regulatory proteins especially cyclin B1. CONCLUSION: Compound 4l exerts significant anticancer effects on NCI-H460 cells in vitro through targeting of mitochondria-dependent apoptotic pathway. These results indicate that the strategy for rational design of 4-MU derivatives may identify potential anticancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Hymecromone/analogs & derivatives , Hymecromone/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Calcium/metabolism , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Hymecromone/chemical synthesis , Hymecromone/chemistry , Molecular Structure , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
11.
Sci Rep ; 6: 34174, 2016 Sep 27.
Article in English | MEDLINE | ID: mdl-27669901

ABSTRACT

Leucine zipper-EF-hand-containing transmembrane protein1 (LETM1) is located in the mitochondrial inner membrane and is defective in Wolf-Hirschhorn syndrome. LETM1 contains only one transmembrane helix, but it behaves as a putative transporter. Our data shows that LETM1 knockdown or overexpression robustly increases or decreases mitochondrial Ca2+ level in HeLa cells, respectively. Also the residue Glu221 of mouse LETM1 is identified to be necessary for Ca2+ flux. The mutation of Glu221 to glutamine abolishes the Ca2+-transport activity of LETM1 in cells. Furthermore, the purified LETM1 exhibits Ca2+/H+ anti-transport activity, and the activity is enhanced as the proton gradient is increased. More importantly, electron microscopy studies reveal a hexameric LETM1 with a central cavity, and also, observe two different conformational states under alkaline and acidic conditions, respectively. Our results indicate that LETM1 is a Ca2+/H+ antiporter and most likely responsible for mitochondrial Ca2+ output.

12.
Nature ; 517(7536): 640-4, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25383530

ABSTRACT

DNA methylation is an important epigenetic modification that is essential for various developmental processes through regulating gene expression, genomic imprinting, and epigenetic inheritance. Mammalian genomic DNA methylation is established during embryogenesis by de novo DNA methyltransferases, DNMT3A and DNMT3B, and the methylation patterns vary with developmental stages and cell types. DNA methyltransferase 3-like protein (DNMT3L) is a catalytically inactive paralogue of DNMT3 enzymes, which stimulates the enzymatic activity of Dnmt3a. Recent studies have established a connection between DNA methylation and histone modifications, and revealed a histone-guided mechanism for the establishment of DNA methylation. The ATRX-DNMT3-DNMT3L (ADD) domain of Dnmt3a recognizes unmethylated histone H3 (H3K4me0). The histone H3 tail stimulates the enzymatic activity of Dnmt3a in vitro, whereas the molecular mechanism remains elusive. Here we show that DNMT3A exists in an autoinhibitory form and that the histone H3 tail stimulates its activity in a DNMT3L-independent manner. We determine the crystal structures of DNMT3A-DNMT3L (autoinhibitory form) and DNMT3A-DNMT3L-H3 (active form) complexes at 3.82 and 2.90 Å resolution, respectively. Structural and biochemical analyses indicate that the ADD domain of DNMT3A interacts with and inhibits enzymatic activity of the catalytic domain (CD) through blocking its DNA-binding affinity. Histone H3 (but not H3K4me3) disrupts ADD-CD interaction, induces a large movement of the ADD domain, and thus releases the autoinhibition of DNMT3A. The finding adds another layer of regulation of DNA methylation to ensure that the enzyme is mainly activated at proper targeting loci when unmethylated H3K4 is present, and strongly supports a negative correlation between H3K4me3 and DNA methylation across the mammalian genome. Our study provides a new insight into an unexpected autoinhibition and histone H3-induced activation of the de novo DNA methyltransferase after its initial genomic positioning.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/chemistry , DNA (Cytosine-5-)-Methyltransferases/metabolism , Histones/chemistry , Histones/metabolism , Animals , Catalytic Domain , Crystallography, X-Ray , DNA/metabolism , DNA Methylation , DNA Methyltransferase 3A , Enzyme Activation , Humans , Mice , Models, Molecular , Protein Structure, Tertiary , Xenopus laevis
13.
Protein Cell ; 4(2): 142-54, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23264040

ABSTRACT

Retinoic acid-inducible gene I (RIG-I) is an important pattern recognition receptor that detects viral RNA and triggers the production of type-I interferons through the downstream adaptor MAVS (also called IPS-1, CARDIF, or VISA). A series of structural studies have elaborated some of the mechanisms of dsRNA recognition and activation of RIG-I. Recent studies have proposed that K63-linked ubiquitination of, or unanchored K63-linked polyubiquitin binding to RIG-I positively regulates MAVS-mediated antiviral signaling. Conversely phosphorylation of RIG-I appears to play an inhibitory role in controlling RIG-I antiviral signal transduction. Here we performed a combined structural and biochemical study to further define the regulatory features of RIG-I signaling. ATP and dsRNA binding triggered dimerization of RIG-I with conformational rearrangements of the tandem CARD domains. Full length RIG-I appeared to form a complex with dsRNA in a 2:2 molar ratio. Compared with the previously reported crystal structures of RIG-I in inactive state, our electron microscopic structure of full length RIG-I in complex with blunt-ended dsRNA, for the first time, revealed an exposed active conformation of the CARD domains. Moreover, we found that purified recombinant RIG-I proteins could bind to the CARD domain of MAVS independently of dsRNA, while S8E and T170E phosphorylation-mimicking mutants of RIG-I were defective in binding E3 ligase TRIM25, unanchored K63-linked polyubiquitin, and MAVS regardless of dsRNA. These findings suggested that phosphorylation of RIG inhibited downstream signaling by impairing RIG-I binding with polyubiquitin and its interaction with MAVS.


Subject(s)
DEAD-box RNA Helicases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphate/metabolism , DEAD Box Protein 58 , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , Dimerization , Humans , Mutagenesis, Site-Directed , Phosphorylation , Polyubiquitin/metabolism , Protein Binding , Protein Structure, Tertiary , RNA, Double-Stranded/metabolism , Receptors, Immunologic , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Signal Transduction , Transcription Factors/metabolism , Tripartite Motif Proteins , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...