Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(12): 8839-8852, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38465917

ABSTRACT

Catalytic conversion of polysulfides emerges as a promising approach to improve the kinetics and mitigate polysulfide shuttling in lithium-sulfur (Li-S) batteries, especially under conditions of high sulfur loading and lean electrolyte. Herein, we present a separator architecture that incorporates double-terminal binding (DTB) sites within a nitrogen-doped carbon framework, consisting of polar Co0.85Se and Co clusters (Co/Co0.85Se@NC), to enhance the durability of Li-S batteries. The uniformly dispersed clusters of polar Co0.85Se and Co offer abundant active sites for lithium polysulfides (LiPSs), enabling efficient LiPS conversion while also serving as anchors through a combination of chemical interactions. Density functional theory calculations, along with in situ Raman and X-ray diffraction characterizations, reveal that the DTB effect strengthens the binding energy to polysulfides and lowers the energy barriers of polysulfide redox reactions. Li-S batteries utilizing the Co/Co0.85Se@NC-modified separator demonstrate exceptional cycling stability (0.042% per cycle over 1000 cycles at 2 C) and rate capability (849 mAh g-1 at 3 C), as well as deliver an impressive areal capacity of 10.0 mAh cm-2 even in challenging conditions with a high sulfur loading (10.7 mg cm-2) and lean electrolyte environments (5.8 µL mg-1). The DTB site strategy offers valuable insights into the development of high-performance Li-S batteries.

2.
J Environ Sci Health B ; 59(4): 160-169, 2024.
Article in English | MEDLINE | ID: mdl-38380471

ABSTRACT

The antibiotic oxytetracycline (OCA) exhibits high insolubility in the natural environment, posing a significant challenge for its removal. This study synthesized a porous structure and a high-surface-area carbon fiber, incorporating zinc oxide (ZnO/CFB) for the effective removal of OCA in wastewater. The material characterization revealed exceptional optical and photochemical properties of ZnO/CFB, featuring a reduced band gap energy of 2.7 eV. ZnO/CFB exhibited robust performance in the photodegradation of OCA in wastewater, achieving an impressive removal efficiency of 86.7%. Remarkably, the reduction of total organic carbon (TOC) reached an outstanding 97.5%. LC-MS analysis confirmed the complete oxidation of OCA and its intermediates, transforming them into inorganic substances within 60 min. This study introduces an efficient strategy for eliminating antibiotic pollutants from wastewater, highlighting the potential of ZnO/CFB as an effective and stable photocatalyst for environmental remediation.


Subject(s)
Oxytetracycline , Water Pollutants, Chemical , Zinc Oxide , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Wastewater , Photolysis , Carbon Fiber , Water Pollutants, Chemical/analysis , Catalysis
3.
Article in English | MEDLINE | ID: mdl-38147254

ABSTRACT

To date, intensive emphasis is required to develop advanced postharvest technologies to ensure food security, increase nutrition, and improve farmers toward cleaner production. How to effectively degrade the harmful gaseous ethylene (C2H4) biosynthesis, which distributes heavy losses of fresh-cut fruits and vegetables, has received considerable attention. Among various advanced techniques, photocatalytic degradation of biological C2H4 is proposed as the most promising method to solve this issue. In this context, the recent studies on the photodegradation of C2H4 have been critically summarized and highlighted. Many photocatalysts, including TiO2-based and non-TiO2-based (metal oxides (ZnO, WO3, Ga2O3), molybdates (ß-Ag2MoO4), phosphides (Ag3PO4), perovskite oxides (Bi2WO6)) nanomaterials, have been revealed with credible performance results. Also, varying reaction parameters to optimize the photocatalytic degradation efficacy in the literature are summarized. We also discussed the current status, challenges, and prospects for enhanced photodegradation of C2H4 in this study. The efficacy and economics of photodegradation have played an essential role in selecting a particular type of photocatalyst. Although many efforts have been made, significant improvements are still required for photocatalysis. In this work, we have also successfully suggested some strategies to further promote this concept for controlling and degrading plant-generated C2H4 in fruit and vegetable postharvest in a sustainable and economically feasible manner.

4.
Environ Toxicol Pharmacol ; 101: 104193, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37348772

ABSTRACT

Plastics are widely employed in modern civilization because of their durability, mold ability, and light weight. In the recent decade, micro/nanoplastics research has steadily increased, highlighting its relevance. However, contaminating micro/nanoplastics in marine environments, terrestrial ecosystems, and biological organisms is considered a severe threat to the environmental system. Geographical distribution, migration patterns, etymologies of formation, and ecological ramifications of absorption are just a few topics covered in the scientific literature on environmental issues. Degradable solutions from material science and chemistry are needed to address the micro/nanoplastics problem, primarily to reduce the production of these pollutants and their potential effects. Removing micro/nanoplastics from their discharge points has been a central and effective way to mitigate the adverse pollution effects. In this review, we begin by discussing the hazardous effect on living beings and the identification-characterization of micro/nanoplastics. Then, we provide a summary of the existing degradation strategies, which include bio-degradation and advanced oxidation processes (AOPs), and a detailed discussion of their degradation mechanisms is also represented. Finally, a persuasive summary of the evaluated work and projections for the future of this topic is provided.


Subject(s)
Plastics , Water Pollutants, Chemical , Plastics/toxicity , Microplastics , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Pollution
5.
Small ; 19(39): e2302160, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37162450

ABSTRACT

Mn-based layered oxide is extensively investigated as a promising cathode material for potassium-ion batteries due to its high theoretical capacity and natural abundance of manganese. However, the Jahn-Teller distortion caused by high-spin Mn3+ (t2g 3 eg 1 ) destabilizes the host structure and reduces the cycling stability. Here, K0.02 Na0.55 Mn0.70 Ni0.25 Zn0.05 O2 (denoted as KNMNO-Z) is reported to inhibit the Jahn-Teller effect and reduce the irreversible phase transition. Through the implementation of a Zn-doping strategy, higher Mn valence is achieved in the KNMNO-Z electrode, resulting in a reduction of Mn3+ amount and subsequently leading to an improvement in cyclic stability. Specifically, after 1000 cycles, a high retention rate of 97% is observed. Density functional theory calculations reveals that low-valence Zn2+ ions substituting the transition metal position of Mn regulated the electronic structure around the MnO bonding, thereby alleviating the anisotropic coupling between oxidized O2- and Mn4+ and improving the structural stability. K0.02 Na0.55 Mn0.70 Ni0.25 Zn0.05 O2 provided an initial discharge capacity of 57 mAh g-1 at 100 mA g-1 and a decay rate of only 0.003% per cycle, indicating that the Zn-doped strategy is effective for developing high-performance Mn-based layered oxide cathode materials in PIBs.

SELECTION OF CITATIONS
SEARCH DETAIL