Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Hypertension ; 81(4): 811-822, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38507511

ABSTRACT

BACKGROUND: The zona glomerulosa of the adrenal gland is responsible for the synthesis and release of the mineralocorticoid aldosterone. This steroid hormone regulates salt reabsorption in the kidney and blood pressure. The most important stimuli of aldosterone synthesis are the serum concentrations of angiotensin II and potassium. In response to these stimuli, voltage and intracellular calcium levels in the zona glomerulosa oscillate, providing the signal for aldosterone synthesis. It was proposed that the voltage-gated T-type calcium channel CaV3.2 is necessary for the generation of these oscillations. However, Cacna1h knock-out mice have normal plasma aldosterone levels, suggesting additional calcium entry pathways. METHODS: We used a combination of calcium imaging, patch clamp, and RNA sequencing to investigate calcium influx pathways in the murine zona glomerulosa. RESULTS: Cacna1h-/- glomerulosa cells still showed calcium oscillations with similar concentrations as wild-type mice. No calcium channels or transporters were upregulated to compensate for the loss of CaV3.2. The calcium oscillations observed were instead dependent on L-type voltage-gated calcium channels. Furthermore, we found that L-type channels can also partially compensate for an acute inhibition of CaV3.2 in wild-type mice. Only inhibition of both T- and L-type calcium channels abolished the increase of intracellular calcium caused by angiotensin II in wild-type. CONCLUSIONS: Our study demonstrates that T-type calcium channels are not strictly required to maintain glomerulosa calcium oscillations and aldosterone production. Pharmacological inhibition of T-type channels alone will likely not significantly impact aldosterone production in the long term.


Subject(s)
Calcium Channels, L-Type , Zona Glomerulosa , Mice , Animals , Zona Glomerulosa/metabolism , Calcium Channels, L-Type/metabolism , Calcium Channel Blockers/pharmacology , Aldosterone/metabolism , Calcium Signaling , Calcium/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism
2.
JCI Insight ; 8(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37698934

ABSTRACT

Somatic gain-of-function mutations in the L-type calcium channel CaV1.3 (CACNA1D gene) cause adrenal aldosterone-producing adenomas and micronodules. De novo germline mutations are found in a syndrome of primary aldosteronism, seizures, and neurologic abnormalities (PASNA) as well as in autism spectrum disorder. Using CRISPR/Cas9, we here generated mice with a Cacna1d gain-of-function mutation found in both adenomas and PASNA syndrome (Cacna1dIle772Met/+). These mice show reduced body weight and increased mortality from weaning to approximately 100 days of age. Male mice do not breed, likely due to neuromotor impairment, and the offspring of female mice die perinatally, likely due to lack of maternal care. Mice generated by in vitro fertilization showed elevated intracellular calcium in the aldosterone-producing zona glomerulosa, an elevated aldosterone/renin ratio, and persistently elevated serum aldosterone on a high-salt diet as signs of primary aldosteronism. Anesthesia with ketamine and xylazine induced tonic-clonic seizures. Neurologic abnormalities included hyperlocomotion, impaired performance in the rotarod test, impaired nest building, and slight changes in social behavior. Intracellular calcium in the zona glomerulosa, aldosterone levels, and rotarod performance responded to treatment with the calcium channel blocker isradipine, with implications for the therapy of patients with aldosterone-producing lesions and with PASNA syndrome.


Subject(s)
Adenoma , Autism Spectrum Disorder , Hyperaldosteronism , Humans , Male , Female , Mice , Animals , Aldosterone , Hyperaldosteronism/drug therapy , Hyperaldosteronism/genetics , Isradipine , Calcium , Mutation , Seizures
3.
Handb Exp Pharmacol ; 279: 249-262, 2023.
Article in English | MEDLINE | ID: mdl-37311830

ABSTRACT

Aldosterone is a steroid hormone produced in the zona glomerulosa (ZG) of the adrenal cortex. The most prominent function of aldosterone is the control of electrolyte homeostasis and blood pressure via the kidneys. The primary factors regulating aldosterone synthesis are the serum concentrations of angiotensin II and potassium. The T-type voltage-gated calcium channel CaV3.2 (encoded by CACNA1H) is an important component of electrical as well as intracellular calcium oscillations, which govern aldosterone production in the ZG. Excessive aldosterone production that is (partially) uncoupled from physiological stimuli leads to primary aldosteronism, the most common cause of secondary hypertension. Germline gain-of-function mutations in CACNA1H were identified in familial hyperaldosteronism, whereas somatic mutations are a rare cause of aldosterone-producing adenomas. In this review, we summarize these findings, put them in perspective, and highlight missing knowledge.


Subject(s)
Calcium Channels, T-Type , Hyperaldosteronism , Hypertension , Humans , Aldosterone , Hyperaldosteronism/genetics , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Hypertension/genetics , Calcium Signaling , Mutation
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33879608

ABSTRACT

Gain-of-function mutations in the CACNA1H gene (encoding the T-type calcium channel CaV3.2) cause autosomal-dominant familial hyperaldosteronism type IV (FH-IV) and early-onset hypertension in humans. We used CRISPR/Cas9 to generate Cacna1hM1560V/+ knockin mice as a model of the most common FH-IV mutation, along with corresponding knockout mice (Cacna1h-/- ). Adrenal morphology of both Cacna1hM1560V/+ and Cacna1h-/- mice was normal. Cacna1hM1560V/+ mice had elevated aldosterone:renin ratios (a screening parameter for primary aldosteronism). Their adrenal Cyp11b2 (aldosterone synthase) expression was increased and remained elevated on a high-salt diet (relative autonomy, characteristic of primary aldosteronism), but plasma aldosterone was only elevated in male animals. The systolic blood pressure of Cacna1hM1560V/+ mice was 8 mmHg higher than in wild-type littermates and remained elevated on a high-salt diet. Cacna1h-/- mice had elevated renal Ren1 (renin-1) expression but normal adrenal Cyp11b2 levels, suggesting that in the absence of CaV3.2, stimulation of the renin-angiotensin system activates alternative calcium entry pathways to maintain normal aldosterone production. On a cellular level, Cacna1hM1560V/+ adrenal slices showed increased baseline and peak intracellular calcium concentrations in the zona glomerulosa compared to controls, but the frequency of calcium spikes did not rise. We conclude that FH-IV, on a molecular level, is caused by elevated intracellular Ca2+ concentrations as a signal for aldosterone production in adrenal glomerulosa cells. We demonstrate that a germline Cacna1h gain-of-function mutation is sufficient to cause mild primary aldosteronism, whereas loss of CaV3.2 channel function can be compensated for in a chronic setting.


Subject(s)
Calcium Signaling/physiology , Hyperaldosteronism/physiopathology , Aldosterone/biosynthesis , Animals , Blood Pressure , Calcium Channels/genetics , Calcium Channels, T-Type/genetics , Calcium Channels, T-Type/metabolism , Cytochrome P-450 CYP11B2/metabolism , Disease Models, Animal , Gain of Function Mutation , Hyperaldosteronism/metabolism , Hypertension/physiopathology , Male , Mice , Mice, Inbred C57BL , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...