Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Comput Biol Med ; 140: 105095, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34902610

ABSTRACT

BACKGROUND: Liver segmentation is a fundamental step in the treatment planning and diagnosis of liver cancer. However, manual segmentation of liver is time-consuming because of the large slice quantity and subjectiveness associated with the specialist's experience, which can lead to segmentation errors. Thus, the segmentation process can be automated using computational methods for better time efficiency and accuracy. However, automatic liver segmentation is a challenging task, as the liver can vary in shape, ill-defined borders, and lesions, which affect its appearance. We aim to propose an automatic method for liver segmentation using computed tomography (CT) images. METHODS: The proposed method, based on deep convolutional neural network models and image processing techniques, comprise of four main steps: (1) image preprocessing, (2) initial segmentation, (3) reconstruction, and (4) final segmentation. RESULTS: We evaluated the proposed method using 131 CT images from the LiTS image base. An average sensitivity of 95.45%, an average specificity of 99.86%, an average Dice coefficient of 95.64%, an average volumetric overlap error (VOE) of 8.28%, an average relative volume difference (RVD) of -0.41%, and an average Hausdorff distance (HD) of 26.60 mm were achieved. CONCLUSIONS: This study demonstrates that liver segmentation, even when lesions are present in CT images, can be efficiently performed using a cascade approach and including a reconstruction step based on deep convolutional neural networks.

2.
Expert Syst Appl ; 183: 115452, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34177133

ABSTRACT

The COVID-19 pandemic, which originated in December 2019 in the city of Wuhan, China, continues to have a devastating effect on the health and well-being of the global population. Currently, approximately 8.8 million people have already been infected and more than 465,740 people have died worldwide. An important step in combating COVID-19 is the screening of infected patients using chest X-ray (CXR) images. However, this task is extremely time-consuming and prone to variability among specialists owing to its heterogeneity. Therefore, the present study aims to assist specialists in identifying COVID-19 patients from their chest radiographs, using automated computational techniques. The proposed method has four main steps: (1) the acquisition of the dataset, from two public databases; (2) the standardization of images through preprocessing; (3) the extraction of features using a deep features-based approach implemented through the networks VGG19, Inception-v3, and ResNet50; (4) the classifying of images into COVID-19 groups, using eXtreme Gradient Boosting (XGBoost) optimized by particle swarm optimization (PSO). In the best-case scenario, the proposed method achieved an accuracy of 98.71%, a precision of 98.89%, a recall of 99.63%, and an F1-score of 99.25%. In our study, we demonstrated that the problem of classifying CXR images of patients under COVID-19 and non-COVID-19 conditions can be solved efficiently by combining a deep features-based approach with a robust classifier (XGBoost) optimized by an evolutionary algorithm (PSO). The proposed method offers considerable advantages for clinicians seeking to tackle the current COVID-19 pandemic.

3.
PLoS One ; 16(5): e0251591, 2021.
Article in English | MEDLINE | ID: mdl-33989316

ABSTRACT

Age-related macular degeneration (AMD) is an eye disease that can cause visual impairment and affects the elderly over 50 years of age. AMD is characterized by the presence of drusen, which causes changes in the physiological structure of the retinal pigment epithelium (RPE) and the boundaries of the Bruch's membrane layer (BM). Optical coherence tomography is one of the main exams for the detection and monitoring of AMD, which seeks changes through the evaluation of successive sectional cuts in the search for morphological changes caused by drusen. The use of CAD (Computer-Aided Detection) systems has contributed to increasing the chances of correct detection, assisting specialists in diagnosing and monitoring disease. Thus, the objective of this work is to present a method for the segmentation of the inner limiting membrane (ILM), retinal pigment epithelium, and Bruch's membrane in OCT images of healthy and Intermediate AMD patients. The method uses two deep neural networks, U-Net and DexiNed to perform the segmentation. The results were promising, reaching an average absolute error of 0.49 pixel for ILM, 0.57 for RPE, and 0.66 for BM.


Subject(s)
Macular Degeneration/diagnostic imaging , Retina/diagnostic imaging , Tomography, Optical Coherence/methods , Aged , Aged, 80 and over , Bruch Membrane/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Middle Aged , Retinal Pigment Epithelium/diagnostic imaging
4.
Comput Methods Programs Biomed ; 197: 105685, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32798976

ABSTRACT

BACKGROUND AND OBJECTIVE: One of the main steps in the planning of radiotherapy (RT) is the segmentation of organs at risk (OARs) in Computed Tomography (CT). The esophagus is one of the most difficult OARs to segment. The boundaries between the esophagus and other surrounding tissues are not well-defined, and it is presented in several slices of the CT. Thus, manually segment the esophagus requires a lot of experience and takes time. This difficulty in manual segmentation combined with fatigue due to the number of slices to segment can cause human errors. To address these challenges, computational solutions for analyzing medical images and proposing automated segmentation have been developed and explored in recent years. In this work, we propose a fully automatic method for esophagus segmentation for better planning of radiotherapy in CT. METHODS: The proposed method is a fully automated segmentation of the esophagus, consisting of 5 main steps: (a) image acquisition; (b) VOI segmentation; (c) preprocessing; (d) esophagus segmentation; and (e) segmentation refinement. RESULTS: The method was applied in a database of 36 CT acquired from 3 different institutes. It achieved the best results in literature so far: Dice coefficient value of 82.15%, Jaccard Index of 70.21%, accuracy of 99.69%, sensitivity of 90.61%, specificity of 99.76%, and Hausdorff Distance of 6.1030 mm. CONCLUSIONS: With the achieved results, we were able to show how promising the method is, and that applying it in large medical centers, where esophagus segmentation is still an arduous and challenging task, can be of great help to the specialists.


Subject(s)
Deep Learning , Esophagus , Image Processing, Computer-Assisted , Esophagus/diagnostic imaging , Humans , Neural Networks, Computer , Tomography, X-Ray Computed
5.
Comput Biol Med ; 123: 103906, 2020 08.
Article in English | MEDLINE | ID: mdl-32768047

ABSTRACT

BACKGROUND: The precise segmentation of kidneys and kidney tumors can help medical specialists to diagnose diseases and improve treatment planning, which is highly required in clinical practice. Manual segmentation of the kidneys is extremely time-consuming and prone to variability between different specialists due to their heterogeneity. Because of this hard work, computational techniques, such as deep convolutional neural networks, have become popular in kidney segmentation tasks to assist in the early diagnosis of kidney tumors. In this study, we propose an automatic method to delimit the kidneys in computed tomography (CT) images using image processing techniques and deep convolutional neural networks (CNNs) to minimize false positives. METHODS: The proposed method has four main steps: (1) acquisition of the KiTS19 dataset, (2) scope reduction using AlexNet, (3) initial segmentation using U-Net 2D, and (4) false positive reduction using image processing to maintain the largest elements (kidneys). RESULTS: The proposed method was evaluated in 210 CTs from the KiTS19 database and obtained the best result with an average Dice coefficient of 96.33%, an average Jaccard index of 93.02%, an average sensitivity of 97.42%, an average specificity of 99.94% and an average accuracy of 99.92%. In the KiTS19 challenge, it presented an average Dice coefficient of 93.03%. CONCLUSION: In our method, we demonstrated that the kidney segmentation problem in CT can be solved efficiently using deep neural networks to define the scope of the problem and segment the kidneys with high precision and with the use of image processing techniques to reduce false positives.


Subject(s)
Neural Networks, Computer , Tomography, X-Ray Computed , Databases, Factual , Image Processing, Computer-Assisted , Kidney/diagnostic imaging
6.
Comput Methods Programs Biomed ; 177: 285-296, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31319957

ABSTRACT

BACKGROUND AND OBJECTIVE: Chest X-ray (CXR) is one of the most used imaging techniques for detection and diagnosis of pulmonary diseases. A critical component in any computer-aided system, for either detection or diagnosis in digital CXR, is the automatic segmentation of the lung field. One of the main challenges inherent to this task is to include in the segmentation the lung regions overlapped by dense abnormalities, also known as opacities, which can be caused by diseases such as tuberculosis and pneumonia. This specific task is difficult because opacities frequently reach high intensity values which can be incorrectly interpreted by an automatic method as the lung boundary, and as a consequence, this creates a challenge in the segmentation process, because the chances of incomplete segmentations are increased considerably. The purpose of this work is to propose a method for automatic segmentation of lungs in CXR that addresses this problem by reconstructing the lung regions "lost" due to pulmonary abnormalities. METHODS: The proposed method, which features two deep convolutional neural network models, consists of four steps main steps: (1) image acquisition, (2) initial segmentation, (3) reconstruction and (4) final segmentation. RESULTS: The proposed method was experimented on 138 Chest X-ray images from Montgomery County's Tuberculosis Control Program, and has achieved as best result an average sensitivity of 97.54%, an average specificity of 96.79%, an average accuracy of 96.97%, an average Dice coefficient of 94%, and an average Jaccard index of 88.07%. CONCLUSIONS: We demonstrate in our lung segmentation method that the problem of dense abnormalities in Chest X-rays can be efficiently addressed by performing a reconstruction step based on a deep convolutional neural network model.


Subject(s)
Diagnosis, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Lung/diagnostic imaging , Neural Networks, Computer , Pattern Recognition, Automated , Tuberculosis, Pulmonary/diagnostic imaging , Algorithms , Databases, Factual , Humans , Radiography, Thoracic , Reproducibility of Results , Sensitivity and Specificity
7.
Comput Methods Programs Biomed ; 170: 53-67, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30712604

ABSTRACT

BACKGROUND AND OBJECTIVE: The spinal cord is a very important organ that must be protected in treatments of radiotherapy (RT), considered an organ at risk (OAR). Excess rays associated with the spinal cord can cause irreversible diseases in patients who are undergoing radiotherapy. For the planning of treatments with RT, computed tomography (CT) scans are commonly used to delimit the OARs and to analyze the impact of rays in these organs. Delimiting these OARs take a lot of time from medical specialists, plus the fact that involves a large team of professionals. Moreover, this task made slice-by-slice becomes an exhaustive and consequently subject to errors, especially in organs such as the spinal cord, which extend through several slices of the CT and requires precise segmentation. Thus, we propose, in this work, a computational methodology capable of detecting spinal cord in planning CT images. METHODS: The techniques highlighted in this methodology are adaptive template matching for initial segmentation, intrinsic manifold simple linear iterative clustering (IMSLIC) for candidate segmentation and convolutional neural networks (CNN) for candidate classification, that consists of four steps: (1) images acquisition, (2) initial segmentation, (3) candidates segmentation and (4) candidates classification. RESULTS: The methodology was applied on 36 planning CT images provided by The Cancer Imaging Archive, and achieved an accuracy of 92.55%, specificity of 92.87% and sensitivity of 89.23% with 0.065 of false positives per images, without any false positives reduction technique, in detection of spinal cord. CONCLUSIONS: It is demonstrated the feasibility of the analysis of planning CT images using IMSLIC and convolutional neural network techniques to achieve success in detection of spinal cord regions.


Subject(s)
Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Spinal Cord/physiology , Tomography, X-Ray Computed/methods , Humans , Quality of Health Care , Spinal Cord/physiopathology , Spinal Cord Injuries/radiotherapy
8.
IEEE Trans Image Process ; 28(4): 1813-1823, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30387727

ABSTRACT

Lung cancer is the type of cancer that most often kills after the initial diagnosis. To aid the specialist in its diagnosis, temporal evaluation is a potential tool for analyzing indeterminate lesions, which may be benign or malignant, during treatment. With this goal in mind, a methodology is herein proposed for the analysis, quantification, and visualization of changes in lung lesions. This methodology uses a modified version of the quality threshold clustering algorithm to associate each voxel of the lesion to a cluster, and changes in the lesion over time are defined in terms of voxel moves to another cluster. In addition, statistical features are extracted for classification of the lesion as benign or malignant. To develop the proposed methodology, two databases of pulmonary lesions were used, one for malignant lesions in treatment (public) and the other for indeterminate cases (private). We determined that the density change percentage varied from 6.22% to 36.93% of lesion volume in the public database of malignant lesions under treatment and from 19.98% to 38.81% in the private database of lung nodules. Additionally, other inter-cluster density change measures were obtained. These measures indicate the degree of change in the clusters and how each of them is abundant in relation to volume. From the statistical analysis of regions in which the density changes occurred, we were able to discriminate lung lesions with an accuracy of 98.41%, demonstrating that these changes can indicate the true nature of the lesion. In addition to visualizing the density changes occurring in lesions over time, we quantified these changes and analyzed the entire set through volumetry, which is the technique most commonly used to analyze changes in pulmonary lesions.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Lung Neoplasms/diagnostic imaging , Algorithms , Cluster Analysis , Databases, Factual , Humans , Lung/diagnostic imaging , Time Factors , Tomography, X-Ray Computed
9.
Comput Methods Programs Biomed ; 167: 49-63, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29706405

ABSTRACT

BACKGROUND AND OBJECTIVE: White matter lesions are non-static brain lesions that have a prevalence rate up to 98% in the elderly population. Because they may be associated with several brain diseases, it is important that they are detected as soon as possible. Magnetic Resonance Imaging (MRI) provides three-dimensional data with the possibility to detect and emphasize contrast differences in soft tissues, providing rich information about the human soft tissue anatomy. However, the amount of data provided for these images is far too much for manual analysis/interpretation, representing a difficult and time-consuming task for specialists. This work presents a computational methodology capable of detecting regions of white matter lesions of the brain in MRI of FLAIR modality. The techniques highlighted in this methodology are SLIC0 clustering for candidate segmentation and convolutional neural networks for candidate classification. METHODS: The methodology proposed here consists of four steps: (1) images acquisition, (2) images preprocessing, (3) candidates segmentation and (4) candidates classification. RESULTS: The methodology was applied on 91 magnetic resonance images provided by DASA, and achieved an accuracy of 98.73%, specificity of 98.77% and sensitivity of 78.79% with 0.005 of false positives, without any false positives reduction technique, in detection of white matter lesion regions. CONCLUSIONS: It is demonstrated the feasibility of the analysis of brain MRI using SLIC0 and convolutional neural network techniques to achieve success in detection of white matter lesions regions.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Neural Networks, Computer , Pattern Recognition, Automated , White Matter/diagnostic imaging , White Matter/injuries , Algorithms , Brain/diagnostic imaging , Databases, Factual , Deep Learning , Diagnosis, Computer-Assisted , False Positive Reactions , Humans , Prevalence , Reproducibility of Results , Sensitivity and Specificity
10.
Comput Methods Programs Biomed ; 156: 191-207, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29428071

ABSTRACT

BACKGROUND AND OBJECTIVE: The processing of medical image is an important tool to assist in minimizing the degree of uncertainty of the specialist, while providing specialists with an additional source of detect and diagnosis information. Breast cancer is the most common type of cancer that affects the female population around the world. It is also the most deadly type of cancer among women. It is the second most common type of cancer among all others. The most common examination to diagnose breast cancer early is mammography. In the last decades, computational techniques have been developed with the purpose of automatically detecting structures that maybe associated with tumors in mammography examination. This work presents a computational methodology to automatically detection of mass regions in mammography by using a convolutional neural network. METHODS: The materials used in this work is the DDSM database. The method proposed consists of two phases: training phase and test phase. The training phase has 2 main steps: (1) create a model to classify breast tissue into dense and non-dense (2) create a model to classify regions of breast into mass and non-mass. The test phase has 7 step: (1) preprocessing; (2) registration; (3) segmentation; (4) first reduction of false positives; (5) preprocessing of regions segmented; (6) density tissue classification (7) second reduction of false positives where regions will be classified into mass and non-mass. RESULTS: The proposed method achieved 95.6% of accuracy in classify non-dense breasts tissue and 97,72% accuracy in classify dense breasts. To detect regions of mass in non-dense breast, the method achieved a sensitivity value of 91.5%, and specificity value of 90.7%, with 91% accuracy. To detect regions in dense breasts, our method achieved 90.4% of sensitivity and 96.4% of specificity, with accuracy of 94.8%. CONCLUSIONS: According to the results achieved by CNN, we demonstrate the feasibility of using convolutional neural networks on medical image processing techniques for classification of breast tissue and mass detection.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Image Processing, Computer-Assisted/methods , Mammography/methods , Algorithms , Breast Density , Diagnosis, Computer-Assisted/methods , False Positive Reactions , Female , Humans , Models, Statistical , Neural Networks, Computer , Radiographic Image Interpretation, Computer-Assisted/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...