Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Eur J Pharm Sci ; 197: 106775, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38643941

ABSTRACT

Research on pharmaceutical dry powders has been increasing worldwide, along with increased therapeutic strategies for an application through the pulmonary or the nasal routes. In vitro methodologies and tests that mimic the respiratory environment and the process of inhalation itself are, thus, essential. The literature frequently reports cell-based in vitro assays that involve testing the dry powders in suspension. This experimental setting is not adequate, as both the lung and the nasal cavity are devoid of abundant liquid. However, devices that permit powder insufflation over cells in culture are either scarce or technically complex and expensive, which is not feasible in early stages of research. In this context, this work proposes the development of a device that allows the delivery of dry powders onto cell surfaces, thus simulating inhalation more appropriately. Subsequently, a quartz crystal microbalance (QCM) was used to establish a technique enabling the determination of dry powder deposition profiles. Additionally, the determination of the viability of respiratory cells (A549) after the insufflation of a dry powder using the developed device was performed. In all, a prototype for dry powder insufflation was designed and developed, using 3D printing methods for its production. It allowed the homogenous dispersion of the insufflated powders over a petri dish and a QCM crystal, and a more detailed study on how dry powders disperse over the supports. The device, already protected by a patent, still requires further improvement, especially regarding the method for powder weighing and the efficiency of the insufflation process, which is being addressed. The impact of insufflation of air and of locust bean gum (LBG)-based microparticles revealed absence of cytotoxic effect, as cell viability roughly above 70 % was always determined.


Subject(s)
Cell Survival , Dry Powder Inhalers , Insufflation , Powders , Insufflation/methods , Insufflation/instrumentation , Dry Powder Inhalers/methods , Dry Powder Inhalers/instrumentation , Humans , Cell Survival/drug effects , Administration, Inhalation , A549 Cells , Quartz Crystal Microbalance Techniques/methods , Printing, Three-Dimensional , Particle Size , Equipment Design
2.
Molecules ; 28(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37687071

ABSTRACT

Coamorphous formation in binary systems of valsartan (Val) with 4,4'-bipyridine (Bipy) and trimethoprim (Tri) was investigated for mixtures with a mole fraction of 0.16~0.86 of valsartan and evaluated in terms of the glass transition temperature. The glass transition of the systems had a behavior outside the values predicted by the Gordon-Taylor equation, showing that Val-Bipy (hydrogen bonding between the components) had a lower deviation and Val-Tri (ionic bonding between the components) had a higher deviation. Mixtures of compositions 2:1 Val-Bipy and 1:1 Val-Tri were selected for further investigation and verified to be stable, as no crystallization was observed during subsequent heating and cooling programs. For these systems, the effective activation energy during glass transition was evaluated. Compared to pure valsartan, the system with the lower glass transition temperature (Val-Bipy) presented the highest effective activation energy, and the system with the higher glass transition temperature (Val-Tri) presented a lower effective activation energy. The results presented a good correlation between the data obtained from two different techniques to determine the fragility and effective activation energy: non-isothermal kinetic analysis by DSC and TSDC.

3.
Pharmaceutics ; 15(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37376073

ABSTRACT

To investigate the impact of the surface functionalization of mesoporous silica nanoparticle (MSN) carriers in the physical state, molecular mobility and the release of Fenofibrate (FNB) MSNs with ordered cylindrical pores were prepared. The surface of the MSNs was modified with either (3-aminopropyl) triethoxysilane (APTES) or trimethoxy(phenyl)silane (TMPS), and the density of the grafted functional groups was quantified via 1H-NMR. The incorporation in the ~3 nm pores of the MSNs promoted FNB amorphization, as evidenced via FTIR, DSC and dielectric analysis, showing no tendency to undergo recrystallization in opposition to the neat drug. Moreover, the onset of the glass transition was slightly shifted to lower temperatures when the drug was loaded in unmodified MSNs, and MSNs modified with APTES composite, while it increased in the case of TMPS-modified MSNs. Dielectric studies have confirmed these changes and allowed researchers to disclose the broad glass transition in multiple relaxations associated with different FNB populations. Moreover, DRS showed relaxation processes in dehydrated composites associated with surface-anchored FNB molecules whose mobility showed a correlation with the observed drug release profiles.

4.
J Pharm Sci ; 111(8): 2239-2248, 2022 08.
Article in English | MEDLINE | ID: mdl-35235842

ABSTRACT

In this work we study the molecular mobility in the amorphous solid state and in the glass transformation region of two compounds, diazepam and nordazepam; these are two benzodiazepines, a family of psychotropic drugs with sedative, anxiolytic and muscle-relaxing properties. The experimental techniques used are thermostimulated currents (TSC) and differential scanning calorimetry (DSC). TSC is a time-dependent technique recognized for its high resolving power; the use of this technique in the depolarization and polarization modes (TSDC and TSPC respectively), provides results that confirm and complement results of dielectric relaxation spectroscopy (DRS) published recently. On the other hand, the variation with the heating rate of the temperature position of the DSC glass transition signal also allowed the estimation of the activation energy at Tg and of the dynamic fragility of the two glass formers.


Subject(s)
Anti-Anxiety Agents , Nordazepam , Calorimetry, Differential Scanning , Diazepam , Glass , Hypnotics and Sedatives
5.
Int J Pharm ; 584: 119410, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32445909

ABSTRACT

The thermal behavior of carvedilol and loratadine was studied by differential scanning calorimetry (DSC). The glass-forming ability, as well as the the tendency for crystallization from the glass (glass stability) and from the metastable and equilibrium melt were also investigated by DSC. In addition this technique was also used to characterize the glass transition of carvedilol and loratadine by determining the activation energy of the structural relaxation, the dynamic fragility, and the heat capacity jump associated with the glass transformation. Different aspects of the molecular mobility in carvedilol and loratadine were analyzed by Thermally Stimulated Depolarization Currents (TSDC), while in carvedilol the Dielectric Relaxation Spectroscopy (DRS) technique was also used. Carvedilol stands out for its high values of specific heat jump and dynamic fragility, which has been attributed to the particular mobility of this glass-former in the glass transformation region, a consequence of specific characteristics of its molecular structure. These molecular features are also at the origin of a relaxation above Tg that has been detected and characterized by TSDC; the DRS investigation allowed to better understand the molecular dynamics in carvedilol in the amorphous solid, in the metastable liquid state and in the glass transformation region. Finally, the secondary relaxations in loratadine were studied by TSDC, while those in carvedilol were studied by the two dielectric techniques and the results were compared and discussed.


Subject(s)
Carvedilol/chemistry , Chemistry, Pharmaceutical/methods , Loratadine/chemistry , Molecular Dynamics Simulation , Calorimetry, Differential Scanning , Crystallization , Dielectric Spectroscopy , Transition Temperature , Vitrification
6.
J Pharm Sci ; 108(3): 1254-1263, 2019 03.
Article in English | MEDLINE | ID: mdl-30391416

ABSTRACT

The analysis of the thermal behavior of efavirenz showed a high glass-forming ability and good glass stability of this glass-forming liquid at room temperature. No polymorphic forms were formed either by cold crystallization or by recrystallization from solvent acetone. The determination of the dynamic fragility by the differential scanning calorimetry, thermally stimulated depolarization currents (TSDC), and dielectric relaxation spectroscopy (DRS) techniques is unanimous in suggesting efavirenz as a moderately fragile liquid. With DRS, secondary relaxations were detected, however, with weak intensities that did not allow the respective kinetic analysis; in contrast, TSDC allows clearly resolving the components of the secondary ß-relaxation below Tg, with activation energies distributed between about 75 and 90 kJ mol-1 and Arrhenius prefactors of the order of 10-13 s. In this regard, the TSDC technique proved to be more effective compared to DRS in characterizing the secondary relaxation. The glass forming ability and glass stability found for efavirenz have been discussed in terms of various thermodynamic and kinetic parameters such as the reduced glass transition temperature, Tgred, the dynamic fragility, m, the stretching exponent, ßKWW, the melting entropy, ΔSfus, and the molecular stiffness. The exceptionally low value of efavirenz fusion entropy was highlighted as a key feature of the thermal behavior of this glass-forming liquid.


Subject(s)
Benzoxazines/chemistry , Transition Temperature , Vitrification , Alkynes , Calorimetry, Differential Scanning , Chemistry, Pharmaceutical , Crystallization , Cyclopropanes , Dielectric Spectroscopy , Entropy , Kinetics , Solvents/chemistry
7.
AAPS PharmSciTech ; 19(3): 1274-1286, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29313262

ABSTRACT

Praziquantel (PZQ) is the recommended, effective, and safe treatment against all forms of schistosomiasis. Solid dispersions (SDs) in water-soluble polymers have been reported to increase solubility and bioavailability of poorly water-soluble drugs like PZQ, generally due to the amorphous form stabilization. In this work, poloxamer (PLX) 237 and poly(vinylpyrrolidone) (PVP) K30 were evaluated as potential carriers to revert PZQ crystallization. Binary and ternary SDs were prepared by the solvent evaporation method. PZQ solubility increased similarly with PLX either as binary physical mixtures or SDs. Such unpredicted data correlated well with crystalline PZQ and PLX as detected by solid-state NMR (ssNMR) and differential scanning calorimetry in those samples. Ternary PVP/PLX/PZQ SDs showed both ssNMR broad and narrow superimposed signals, thus revealing the presence of amorphous and crystalline PZQ, respectively, and exhibited the highest PZQ dissolution efficiency (up to 82% at 180 min). SDs with PVP provided a promising way to enhance solubility and dissolution rate of PZQ since PLX alone did not prevent recrystallization of amorphous PZQ. Based on ssNMR data, novel evidences on PLX structure and molecular dynamics were also obtained. As shown for the first time using ssNMR, propylene glycol and ethylene glycol constitute the PLX amorphous and crystalline components, respectively.


Subject(s)
Anthelmintics/chemistry , Drug Carriers/chemistry , Poloxamer/chemistry , Povidone/chemistry , Praziquantel/chemistry , Anthelmintics/administration & dosage , Calorimetry, Differential Scanning , Crystallization , Praziquantel/administration & dosage , Solubility
8.
Polymers (Basel) ; 10(10)2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30961095

ABSTRACT

The synthesis of four samples of new polyurethanes was evaluated by changing the ratio of the diol monomers used, poly(propylene glycol) (PPG) and D-isosorbide, in the presence of aliphatic isocyanates such as the isophorone diisocyanate (IPDI) and 4,4'-methylenebis(cyclohexyl isocyanate) (HMDI). The thermal properties of the four polymers obtained were determined by DSC, exhibiting Tg values in the range 55⁻70 °C, and their molecular structure characterized by FTIR, ¹H, and 13C NMR spectroscopies. The diffusion coefficients of these polymers in solution were measured by the Pulse Gradient Spin Echo (PGSE) NMR method, enabling the calculation of the corresponding hydrodynamic radii in diluted solution (1.62⁻2.65 nm). The molecular weights were determined by GPC/SEC and compared with the values determined by a quantitative 13C NMR analysis. Finally, the biocompatibility of the polyurethanes was assessed using the HaCaT keratinocyte cell line by the MTT reduction assay method showing values superior to 70% cell viability.

9.
ChemSusChem ; 10(7): 1360-1363, 2017 04 10.
Article in English | MEDLINE | ID: mdl-28199779

ABSTRACT

An alternative, efficient, and green synthetic strategy for the preparation of pharmaceutical ionic liquids using mechanochemistry (MechanoAPI-ILs) is reported. Six new API-ILs based on gabapentin and l-glutamic acid were successfully synthesized and characterized, demonstrating that mechanochemistry is a very promising synthetic strategy. Results compare both the new and the classical approach and clearly show the advantages of the new method. This new technique is faster, solvent free, reproducible, selective, and leads to higher yields.


Subject(s)
Chemistry Techniques, Synthetic/methods , Green Chemistry Technology/methods , Ionic Liquids/chemistry , Mechanical Phenomena , Amines/chemical synthesis , Cyclohexanecarboxylic Acids/chemical synthesis , Gabapentin , Glutamic Acid/chemical synthesis , gamma-Aminobutyric Acid/chemical synthesis
10.
Curr Drug Deliv ; 14(1): 91-98, 2017.
Article in English | MEDLINE | ID: mdl-27160253

ABSTRACT

BACKGROUND: The preparation of APIs in the amorphous solid form can be a means of circumventing problems arising from poor solubility and low dissolution rate of the crystalline drugs. However, molecular mobility can be responsible for the glass instability, so that the kinetic characterization of the different relaxations that subsist in the amorphous solid is useful to allow define the conditions for greater stability of the glassy pharmaceutical. Our purpose is to use the experimental techniques of differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC) to study the thermal behavior of the pharmaceutical drug nimesulide and its slow molecular mobility in the amorphous solid state. METHODS: DSC provides us a general view of the thermal behaviour of nimesulide and allows a general kinetic characterization of its glass transition relaxation. TSDC allows isolating the individual modes of motion present in nimesulide (in the temperature range between -150ºC and +15ºC). From the experimental output of the TSDC experiments, the kinetic parameters associated with the different mobility modes of motion were obtained, which allowed a detailed characterisation of the distribution of relaxation times of the complex relaxations. RESULTS: No molecular mobility was detected below ∼ -30ºC. A sub-Tg relaxation, or secondary process, was found by TSDC in the temperature region between ∼ -15ºC and ∼ +7ºC; this is a local mobility that is affected by physical aging, and was attributed to a slow ß-relaxation (Johari-Goldstein). The analysis by DSC and TSDC of the α-relaxation showed that nimesulide is a moderately fragile glass former. The dynamic fragility obtained by DSC was mDSC = 52 while that obtained by TSDC was mTSDC = 70. CONCLUSIONS: From the DSC study of the thermal behaviour we concluded that nimesulide has a moderate glass forming ability and a week glass stability. The fact that the cold crystallization occurs only some few tens of degrees above the glass transition temperature, and shows a slow kinetics, allowed the study of the mobility by TSDC. TSDC thus proved to be an adequate technique to study the molecular mobility in the amorphous nimesulide. However, the study by spectroscopic dielectric relaxation is probably impossible under these conditions.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Sulfonamides/chemistry , Temperature , Calorimetry, Differential Scanning , Kinetics , Molecular Structure
11.
J Pharm Sci ; 105(12): 3573-3584, 2016 12.
Article in English | MEDLINE | ID: mdl-27773524

ABSTRACT

The slow molecular mobility in the amorphous solid state of 3 active pharmaceutical drugs (cimetidine, nizatidine, and famotidine) has been studied using differential scanning calorimetry and the 2 dielectric-related techniques of dielectric relaxation spectroscopy and thermally stimulated depolarization currents. The glass-forming ability, the glass stability, and the tendency for crystallization from the equilibrium melt were investigated by differential scanning calorimetry, which also provided the characterization of the main relaxation of the 3 glass formers. The chemical instability of famotidine at the melting temperature and above it prevented the preparation of the amorphous for dielectric studies. In contrast, for cimetidine and nizatidine, the dielectric study yielded the main kinetic features of the α relaxation and of the secondary relaxations. According to the obtained results, nizatidine displays the higher fragility index of the 3 studied glass-forming drugs. The thermally stimulated depolarization current technique has proved useful to identify the Johari-Goldstein relaxation and to measure τßJG in the amorphous solid state, that is, in a frequency range which is not easily accessible by dielectric relaxation spectroscopy.


Subject(s)
Chemistry, Pharmaceutical/methods , Cimetidine/chemistry , Famotidine/chemistry , Nizatidine/chemistry , Calorimetry, Differential Scanning/methods , Cimetidine/metabolism , Famotidine/metabolism , Nizatidine/metabolism , Time Factors
12.
Int J Pharm ; 511(2): 983-93, 2016 Sep 25.
Article in English | MEDLINE | ID: mdl-27506511

ABSTRACT

The saturation solubility of PVP:PZQ physical mixtures (PMs) and solid dispersions (SDs) prepared from ethanol (E/E) or ethanol/water (E/W) by the solvent evaporation method at 1:1, 2:1 and 3:1 ratio (w/w) was determined. The presence of PVP improves the solubility of PZQ (0.31±0.01mg/mL). A maximum of 1.29±0.03mg/mL of PZQ in solution was achieved for the 3:1 SD (E/E). The amount of PZQ in solution depends on the amount of polymer and on the preparation method. Solid-state NMR (ssNMR) and DSC were used to understand this behavior. Results show that PMs are a mixture of crystalline PZQ with the polymer, while SDs show different degrees of drug amorphization depending on the solvent used. For E/W SDs, PZQ exists in amorphous and crystalline states, with no clear correlation between the amount of crystalline PZQ and the amount of PVP. For E/E SDs, formulations with a higher percentage of PZQ are amorphous with the components miscible in domains larger than 3nm ((1)H ssNMR relaxation measurements). Albeit its higher saturation solubility, the 3:1 E/E PVP:PZQ sample has a significant crystalline content, probably due to the water introduced by the polymer. High PVP content and small crystal size account for this result.


Subject(s)
Anthelmintics/chemistry , Povidone/chemistry , Praziquantel/chemistry , Solvents/chemistry , Anthelmintics/metabolism , Calorimetry, Differential Scanning/methods , Crystallization , Drug Compounding , Magnetic Resonance Spectroscopy/methods , Povidone/metabolism , Praziquantel/metabolism , Solubility , Solvents/metabolism
13.
Int J Pharm ; 501(1-2): 39-48, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-26826567

ABSTRACT

The slow molecular mobility of three active pharmaceutical drugs (voriconazole, miconazole and itraconazole) has been studied by differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC). This study yielded the main kinetic features of the secondary relaxations and of the main (glass transition) relaxation, in particular their distribution of relaxation times. The dynamic fragility of the three glass formers was determined from DSC data (using two different procedures) and from TSDC data. According to our results voriconazole behaves as a relatively strong liquid, while miconazole is moderately fragile and itraconazole is a very fragile liquid. There are no studies in this area published in the literature relating to voriconazole. Also not available in the literature is a slow mobility study by dielectric relaxation spectroscopy in the amorphous miconazole. Apart from that, the results obtained are in reasonable agreement with published works using different experimental techniques.


Subject(s)
Itraconazole/chemistry , Miconazole/chemistry , Voriconazole/chemistry , Antifungal Agents/chemistry , Calorimetry, Differential Scanning , Transition Temperature
14.
Chem Sci ; 7(7): 4251-4258, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-30155072

ABSTRACT

The thermosalient effect is still a rare and poorly understood phenomenon, where crystals suddenly jump, bend, twist or explode upon undergoing a thermally activated phase transition. The synthesis and characterisation of the new spin transition Fe(iii) compound [Fe(5-Br-salEen)2][ClO4] (salEen = N-ethyl-N-(2-aminoethyl)salicylaldiminate) is described and its thermosalient behaviour reported. It is the first example of a thermosalient effect with a spin transition and magnetic, calorimetric, diffraction, microscopy and computational studies are used to characterise these effects. Both thermosalient effect and spin transition occur around 320 K upon heating and are accompanied by an anisotropic unit cell change with conservation of crystal symmetry that causes a large enough stress of the crystal lattice to induce crystal explosion. This stress can ultimately be traced back to a diffusionless and distortive structural perturbation resulting in a coupled spin transition-thermosalient effect.

15.
J Pharm Sci ; 104(11): 3833-3841, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26227966

ABSTRACT

The slow molecular dynamics in two active pharmaceutical drugs, ketoprofen and ibuprofen, have been studied by differential scanning calorimetry (DSC) and thermally stimulated depolarization currents (TSDC). This study allowed finding the main kinetic features of the fast secondary (γ) relaxation, of the Johari-Goldstein relaxation, and of the main (glass transition) relaxation, in particular their distribution of relaxation times. The fragility index of the two glass formers was determined based on data from DSC and from TSDC. The obtained results were compared with those obtained by other experimental techniques, namely, dielectric relaxation spectroscopy.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Ibuprofen/chemistry , Ketoprofen/chemistry , Calorimetry, Differential Scanning , Molecular Dynamics Simulation , Phase Transition , Temperature
16.
J Chem Phys ; 142(4): 044903, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25638005

ABSTRACT

The technique of Thermally Stimulated Currents is used to study the slow molecular mobility in a series of poly (1,4-cis-isoprene) samples with different molecular weights, Mw, and low polydispersity. The technique revealed a high resolution power, particularly useful in the study of the lower molecular weight samples where the chain and the segmental relaxations strongly overlap. The dynamic crossover that is reported for the normal mode by varying the molecular weight is clearly revealed by the thermally stimulated depolarization currents results through the temperature location, TMn, of the normal mode peak, the values of the relaxation time at TMn, τ(TMn), and the value of the fragility index of the normal mode, mn. The kinetic features of the glass transition relaxation of polyisoprene have also been determined.

17.
J Phys Chem A ; 118(46): 11026-32, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25340952

ABSTRACT

Significant discrepancies in the literature data for the enthalpy of formation of gaseous anisole, ΔfHmo(PhOCH3, g), have fueled an ongoing controversy regarding the most reliable enthalpy of formation of the phenoxy radical and of the gas phase O-H bond dissociation enthalpy, DHo(PhO-H), in phenol. In the present work ΔfHmo(PhOCH3, g) was reassessed using a combination of calorimetric determinations and high-level (W2-F12) ab initio calculations. Static-bomb combustion calorimetry led to the standard molar enthalpy of formation of liquid anisole at 298.15 K, ΔfHmo(PhOCH3, l) = −(117.1 ± 1.4) kJ·mol(-1). The corresponding enthalpy of vaporization was obtained as, ΔvapHmo(PhOCH3) = 46.41 ± 0.26 kJ·mol(-1), by Calvet-drop microcalorimetry. These results give ΔfHmo(PhOCH3, g) = −(70.7 ± 1.4) kJ·mol(-1), in excellent agreement with ΔfHmo(PhOCH3, g) = −(70.8 ± 3.2) kJ·mol(-1), obtained from the W2-F12 calculations. The ΔfHmo(PhOCH3, g) here recommended leads to ΔfHmo(PhO•, g) = 55.5 ± 2.4 kJ·mol(-)1 and DH°(PhO-H) = 368.1 ± 2.6 kJ·mol(-1).

18.
Mol Pharm ; 11(3): 727-37, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24499472

ABSTRACT

Statins have been widely used as cholesterol-lowering agents. However, low aqueous solubility of crystalline statins and, consequently, reduced biovailability require seeking for alternative forms and formulations to ensure an accurate therapeutic window. The objective of the present study was to evaluate the stability of amorphous simvastatin by probing molecular dynamics using two nondestructive techniques: solid-state NMR and dielectric relaxation spectroscopy. Glassy simvastatin was obtained by the melt quench technique. (13)C cross-polarization/magic-angle-spinning (CP/MAS) NMR spectra and (1)H MAS NMR spectra were obtained from 293 K up to 333 K (Tg ≈ 302 K). The (13)C spin-lattice relaxation times in the rotating frame, T1ρ, were measured as a function of temperature, and the correlation time and activation energy data obtained for local motions in different frequency scales revealed strong dynamic heterogeneity, which appears to be essential for the stability of the amorphous form of simvastatin. In addition, the (1)H MAS measurements presented evidence for mobility of the hydrogen atoms in hydroxyl groups which was assigned to noncooperative secondary relaxations. The complex dielectric permittivity of simvastatin was monitored in isochronal mode at five frequencies (from 0.1 to 1000 kHz), by carrying out a heating/cooling cycle allowing to obtain simvastatin in the supercooled and glassy states. The results showed that no dipolar moment was lost due to immobilization, thus confirming that no crystallization had taken place. Complementarily, the present study focused on the thermal stability of simvastatin using thermogravimetric analysis while the thermal events were followed up by differential scanning calorimetry and dielectric relaxation spectroscopy. Overall, the results confirm that the simvastatin in the glass form reveals a potential use in the solid phase formulation on the pharmaceutical industry.


Subject(s)
Dielectric Spectroscopy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Magnetic Resonance Spectroscopy , Simvastatin/chemistry , Calorimetry, Differential Scanning , Crystallization , Drug Stability , Humans , Molecular Dynamics Simulation , Thermodynamics , Thermogravimetry
19.
J Pharm Sci ; 103(1): 241-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24272683

ABSTRACT

Simvastatin (SV) is a widely used drug for the treatment of hypercholesterolemia in humans. Nevertheless, serious efforts are still being made to develop new SV formulations with, for example, improved tabletability or bioavailability properties. These efforts frequently involve heating the compound well above ambient temperature or even fusion. In this work, the thermal stability of solid SV under different atmospheres was investigated by using isothermal tests in glass ampules, differential scanning calorimetry, and Calvet-drop microcalorimetry experiments. These tests were combined with analytical data from diffuse reflectance infrared Fourier-transform spectroscopy and liquid chromatography coupled with tandem mass spectrometry or Fourier transform ion cyclotron resonance mass spectrometry (LC-FT-ICR-MS). No decomposition was observed when the sample was kept at a temperature ≤373 K under N2 or reduced pressure (13.3 Pa) atmospheres. Thermal degradation was, however, observed for temperatures ≥353 K in the presence of pure or atmospheric oxygen. The nature of the two main oxidative degradation products was determined through MS/MS experiments and accurate mass measurements of the precursor ions using FT-ICR-MS. The obtained results indicated that the decomposition process involves the oxidation of the hexahydronaphthalene fragment of SV.


Subject(s)
Simvastatin/chemistry , Atmosphere , Drug Stability , Glass/chemistry , Oxygen , Pressure , Temperature
20.
Bioresour Technol ; 147: 434-441, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24007722

ABSTRACT

Poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) (P(3HB-4HB-3HV)) terpolymers of low 3-hydroxyvalerate (3HV) content (1.7-6.4%) with 4-hydroxybutyrate (4HB) molar fractions from 1.8% to 35.6% were produced by fed-batch cultivation of Cupriavidus necator DSM545. Waste glycerol, γ-butyrolactone and propionic acid were used as main carbon source, 4HB and 3HV precursors, respectively. Uniaxial tensile tests were performed on the corresponding biopolymers. The Young's modulus and tensile strength of P(3HB-4HB-3HV) decreased, whereas the elongation at break increased with the 4HB molar%, following the general trend described for poly(3-hydroxybutyrate-4-hydroxybutyrate) (P(3HB-4HB)) but with pronounced lower elasticity. Differential scanning calorimetry results indicate that the temperature of crystallization and enthalpy of melting decreased as the 4HB% increased. No crystallization was observed in terpolymers containing more than 30% of heteromonomers (4HB and 3HV) even though multiple melting events were detected. Terpolymer fractions of different composition were obtained by solvent-fractionation of the original bacterial terpolymers.


Subject(s)
Biopolymers/metabolism , Cupriavidus necator/metabolism , Polyhydroxyalkanoates/metabolism , Calorimetry, Differential Scanning , Chromatography, Gel , Crystallization , Magnetic Resonance Spectroscopy , Tensile Strength , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...