Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Biofilms Microbiomes ; 10(1): 35, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555334

ABSTRACT

Malignant bile duct obstruction is typically treated by biliary stenting, which however increases the risk of bacterial infections. Here, we analyzed the microbial content of the biliary stents from 56 patients finding widespread microbial colonization. Seventeen of 36 prevalent stent species are common oral microbiome members, associate with disease conditions when present in the gut, and include dozens of biofilm- and antimicrobial resistance-related genes. This work provides an overview of the microbial communities populating the stents.


Subject(s)
Bacterial Infections , Cholestasis , Neoplasms , Humans , Biofilms , Cholestasis/surgery , Stents/adverse effects , Stents/microbiology
2.
Gastro Hep Adv ; 1(2): 194-209, 2022.
Article in English | MEDLINE | ID: mdl-35174369

ABSTRACT

BACKGROUND AND AIMS: The SARS-CoV-2 pandemic has overwhelmed the treatment capacity of the health care systems during the highest viral diffusion rate. Patients reaching the emergency department had to be either hospitalized (inpatients) or discharged (outpatients). Still, the decision was taken based on the individual assessment of the actual clinical condition, without specific biomarkers to predict future improvement or deterioration, and discharged patients often returned to the hospital for aggravation of their condition. Here, we have developed a new combined approach of omics to identify factors that could distinguish coronavirus disease 19 (COVID-19) inpatients from outpatients. METHODS: Saliva and blood samples were collected over the course of two observational cohort studies. By using machine learning approaches, we compared salivary metabolome of 50 COVID-19 patients with that of 270 healthy individuals having previously been exposed or not to SARS-CoV-2. We then correlated the salivary metabolites that allowed separating COVID-19 inpatients from outpatients with serum biomarkers and salivary microbiota taxa differentially represented in the two groups of patients. RESULTS: We identified nine salivary metabolites that allowed assessing the need of hospitalization. When combined with serum biomarkers, just two salivary metabolites (myo-inositol and 2-pyrrolidineacetic acid) and one serum protein, chitinase 3-like-1 (CHI3L1), were sufficient to separate inpatients from outpatients completely and correlated with modulated microbiota taxa. In particular, we found Corynebacterium 1 to be overrepresented in inpatients, whereas Actinomycetaceae F0332, Candidatus Saccharimonas, and Haemophilus were all underrepresented in the hospitalized population. CONCLUSION: This is a proof of concept that a combined omic analysis can be used to stratify patients independently from COVID-19.

3.
Nutrients ; 13(2)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494335

ABSTRACT

Gut Microbiota (GM) dysbiosis associates with Atherosclerotic Cardiovascular Diseases (ACVD), but whether this also holds true in subjects without clinically manifest ACVD represents a challenge of personalized prevention. We connected exposure to diet (self-reported by food diaries) and markers of Subclinical Carotid Atherosclerosis (SCA) with individual taxonomic and functional GM profiles (from fecal metagenomic DNA) of 345 subjects without previous clinically manifest ACVD. Subjects without SCA reported consuming higher amounts of cereals, starchy vegetables, milky products, yoghurts and bakery products versus those with SCA (who reported to consume more mechanically separated meats). The variety of dietary sources significantly overlapped with the separations in GM composition between subjects without SCA and those with SCA (RV coefficient between nutrients quantities and microbial relative abundances at genus level = 0.65, p-value = 0.047). Additionally, specific bacterial species (Faecalibacterium prausnitzii in the absence of SCA and Escherichia coli in the presence of SCA) are directly related to over-representation of metagenomic pathways linked to different dietary sources (sulfur oxidation and starch degradation in absence of SCA, and metabolism of amino acids, syntheses of palmitate, choline, carnitines and Trimethylamine n-oxide in presence of SCA). These findings might contribute to hypothesize future strategies of personalized dietary intervention for primary CVD prevention setting.


Subject(s)
Carotid Artery Diseases/complications , Diet , Dysbiosis/complications , Gastrointestinal Microbiome/physiology , Adult , Aged , Aged, 80 and over , Bacteria/classification , Bacteria/drug effects , Carnitine/therapeutic use , Carotid Artery Diseases/microbiology , Choline/therapeutic use , Dysbiosis/drug therapy , Dysbiosis/microbiology , Escherichia coli , Faecalibacterium prausnitzii , Feces/microbiology , Feeding Behavior , Female , Gastrointestinal Microbiome/genetics , High-Throughput Nucleotide Sequencing , Humans , Life Style , Male , Metagenomics , Methylamines , Middle Aged , Palmitates/therapeutic use
4.
Toxics ; 8(4)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096627

ABSTRACT

BACKGROUND: folliculogenesis is a strictly regulated process that may be affected by endocrine disrupting chemicals (EDCs) through sometimes not so clear molecular mechanisms. METHODS: we conducted a multicentric observational study involving six fertility centers across Italy, prospectively recruiting 122 women attending a fertility treatment. Recruited women had age ≤42 years, and normal ovarian reserve. Blood and follicular fluid samples were taken for EDCs measurement using liquid chromatography tandem mass spectrometry and each woman completed an epidemiological questionnaire. RESULTS: The main EDCs found were monobutyl phthalate (MBP) (median blood: 8.96 ng/mL, follicular fluid 6.43 ng/mL), monoethylhexyl phthalate (MEHP) (median blood: 9.16 ng/mL, follicular fluid 7.68 ng/mL) and bisphenol A (BPA) (median blood: 1.89 ng/mL, follicular fluid 1.86 ng/mL). We found that serum MBP concentration was significantly associated with the considered area (p < 0.001, adj. mean: 7.61 ng/mL, 14.40 ng/mL, 13.56 ng/mL; Area 1: Milan-Turin, Area 2: Rome-Naples; Area 3: Catania-Bari, respectively) but negatively with home plastic food packaging (p = 0.004). Follicular MBP was associated with irregular cycles (p = 0.019). No association was detected between EDCs and eating habits and other clinical and epidemiological features. CONCLUSIONS: This study represents the first Italian biomonitoring of plastic EDCs in follicular fluid, laying the basis for future prospective evaluation on oocyte quality before assisted reproduction techniques (ART).

5.
J Ovarian Res ; 10(1): 3, 2017 Jan 13.
Article in English | MEDLINE | ID: mdl-28086947

ABSTRACT

BACKGROUND: A standard histomorphometric approach has been used for nearly 40 years that identifies atretic (e.g., dying) follicles by counting the number of pyknotic granulosa cells (GC) in the largest follicle cross-section. This method holds that if one pyknotic granulosa nucleus is seen in the largest cross section of a primary follicle, or three pyknotic cells are found in a larger follicle, it should be categorized as atretic. Many studies have used these criteria to estimate the fraction of atretic follicles that result from genetic manipulation or environmental insult. During an analysis of follicle development in a mouse model of Fragile X premutation, we asked whether these 'historical' criteria could correctly identify follicles that were not growing (and could thus confirmed to be dying). METHODS: Reasoning that the fraction of mitotic GC reveals whether the GC population was increasing at the time of sample fixation, we compared the number of pyknotic nuclei to the number of mitotic figures in follicles within a set of age-matched ovaries. RESULTS: We found that, by itself, pyknotic nuclei quantification resulted in high numbers of false positives (improperly categorized as atretic) and false negatives (improperly categorized intact). For preantral follicles, scoring mitotic and pyknotic GC nuclei allowed rapid, accurate identification of non-growing follicles with 98% accuracy. This method most often required the evaluation of one follicle section, and at most two serial follicle sections to correctly categorize follicle status. For antral follicles, we show that a rapid evaluation of follicle shape reveals which are intact and likely to survive to ovulation. CONCLUSIONS: Combined, these improved, non-arbitrary methods will greatly improve our ability to estimate the fractions of growing/intact and non-growing/atretic follicles in mouse ovaries.


Subject(s)
Follicular Atresia/physiology , Ovarian Follicle/physiology , Animals , Cell Nucleus/pathology , Disease Models, Animal , Female , Fragile X Syndrome/pathology , Granulosa Cells/cytology , Granulosa Cells/metabolism , Granulosa Cells/pathology , Mice , Mitosis , Ovarian Follicle/cytology , Ovarian Follicle/growth & development , Primary Ovarian Insufficiency/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...