Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oper Dent ; 44(3): 302-311, 2019.
Article in English | MEDLINE | ID: mdl-30629465

ABSTRACT

While patient compliance is key to preventive measures related to dental erosion, the application of resin-based materials could serve as an additional treatment to inhibit erosion progression. This in situ study evaluated the effect of applying resin-based materials, including resin infiltrant, on previously eroded enamel subjected to prolonged erosive and abrasive challenges. The factors under study were types of treatment (infiltrant [Icon], sealant [Helioseal Clear], adhesive [Adper Scotchbond Multi-Purpose Plus], and control [no treatment]); wear conditions (erosion [ERO] and erosion + abrasion [ERO + ABR]) and challenge time (5 and 20 days) in a single-phase study. The blocks were prepared from bovine enamel, eroded (0.01 M HCl, pH 2.3 for 30 seconds) and randomized among treatments, wear conditions, and volunteers. The application of resin-based materials followed the manufacturers' recommendations. Twenty-one volunteers wore the palatal intraoral device, in which one row corresponded to ERO and the other to ERO + ABR. In each row, all treatments were represented (2 blocks per treatment). For 20 days, the erosive challenge was performed 4 times/day (immersion in 0.01 M HCl, pH 2.3, for 2 minutes) for the ERO condition. For the ERO + ABR condition, two of the erosive challenges were followed by abrasion for 15 seconds with fluoride dentifrice slurry. Enamel and/or material loss was measured using profilometry (initial, after treatment, and after the end of the fifth and 20th days of in situ erosive challenge) and analyzed by ANOVA models and Tukey's test (α=0.05). The results showed that the application of resin-based materials did not cause superficial enamel loss. The infiltrant group showed a thicker layer of material above the enamel compared with the other materials (p=0.001). After the erosive challenge, there was no difference between the conditions ERO and ERO + ABR (p=0.869). All materials protected the enamel against erosion progression compared with the control group (p=0.001). Based on these results, we conclude that the application of resin-based materials results in protection of previously eroded enamel subjected to in situ erosive and abrasive challenge for 20 days.


Subject(s)
Tooth Abrasion , Tooth Erosion , Animals , Cattle , Dental Enamel , Dental Materials , Fluorides , Humans
2.
Horm Metab Res ; 46(7): 484-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24710698

ABSTRACT

This study investigated how proteins of the insulin signaling cascade could modulate insulin resistance after dexamethasone (Dexa) treatment and aerobic training. Rats were distributed into 4 groups: sedentary control (SC), sedentary+Dexa (SD), trained control (TC), and trained+Dexa (TD), and underwent aerobic training for 70 days or remained sedentary. Dexa was administered during the last 10 days (1 mg · kg(-1) per day i. p.). After 70 days, an intraperitoneal glucose tolerance test (ipGTT) was performed. Protein levels of IRS-1, AKT, and PKC-α in the tibialis anterior (TA) muscle were identified using Western blots. Dexa treatment increased blood glucose and the area under the curve (AUC) of ipGTT. Training attenuated the hyperglycemia and the AUC induced by Dexa. Dexa reduced IRS-1 (- 16%) and AKT (- 43%) protein level with no changes in PKC-α levels. Moreover, these effects on IRS-1 and AKT protein level were prevented in trained animals. These results show for the first time that aerobic exercise prevented reductions of IRS-1 and AKT level induced by Dexa in the TA muscle, suggesting that aerobic exercise is a good strategy to prevent Dexa-induced peripheral insulin resistance.


Subject(s)
Dexamethasone/pharmacology , Insulin Resistance , Physical Conditioning, Animal , Animals , Blood Glucose/metabolism , Blotting, Western , Body Weight/drug effects , Glucose Tolerance Test , Insulin Receptor Substrate Proteins/metabolism , Muscles/drug effects , Muscles/metabolism , Organ Size/drug effects , Phosphorylation/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...