Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 169
Filter
1.
Res Sq ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38978562

ABSTRACT

High ferritin is an important and sensitive biomarker for hemophagocytic lymphohistiocytosis (HLH), a diverse and deadly group of cytokine storm syndromes. Early action to prevent immunopathology in HLH often includes empiric immunomodulation, which can complicate etiologic work-up and prevent collection of early/pre-treatment research samples. To address this, we instituted an alert system where serum ferritin > 1000ng/mL triggered real-time chart review, assessment of whether the value reflected "inflammatory hyperferritnemia (IHF)", and biobanking of remnant samples from consenting IHF patients. We extracted relevant clinical data; periodically measured serum total IL-18, IL-18 binding protein (IL-18BP), and CXCL9; retrospectively classified patients by etiology into infectious, rheumatic, or immune dysregulation; and subjected a subgroup of samples to a 96-analyte biomarker screen. 180 patients were identified, 30.5% of which had IHF. Maximum ferritin levels were significantly higher in patients with IHF than with either hemoglobinopathy or transplant, and highly elevated total IL-18 levels were distinctive to patients with Stills Disease and/or Macrophage Activation Syndrome (MAS). Multi-analyte analysis showed elevation in proteins associated with cytotoxic lymphocytes in all IHF samples when compared to healthy controls and depression of proteins such as ANGPT1 and VEGFR2 in samples from hyperferritinemic sepsis patients relative to non-sepsis controls. This single-center, real-time IFH screen proved feasible and efficient, validated prior observations about the specificity of IL-18, enabled early sample collection from a complex population, suggested a unique vascular biomarker signature in hyperferritinemic sepsis, and expanded our understanding of IHF heterogeneity.

2.
Semin Immunopathol ; 46(3-4): 5, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012374

ABSTRACT

The advent of chimeric antigen receptor T cells (CAR-T) has been a paradigm shift in cancer immunotherapeutics, with remarkable outcomes reported for a growing catalog of malignancies. While CAR-T are highly effective in multiple diseases, salvaging patients who were considered incurable, they have unique toxicities which can be life-threatening. Understanding the biology and risk factors for these toxicities has led to targeted treatment approaches which can mitigate them successfully. The three toxicities of particular interest are cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and immune effector cell-associated hemophagocytic lymphohistiocytosis (HLH)-like syndrome (IEC-HS). Each of these is characterized by cytokine storm and hyperinflammation; however, they differ mechanistically with regard to the cytokines and immune cells that drive the pathophysiology. We summarize the current state of the field of CAR-T-associated toxicities, focusing on underlying biology and how this informs toxicity management and prevention. We also highlight several emerging agents showing promise in preclinical models and the clinic. Many of these established and emerging agents do not appear to impact the anti-tumor function of CAR-T, opening the door to additional and wider CAR-T applications.


Subject(s)
Cytokine Release Syndrome , Cytokines , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/therapy , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/etiology , Cytokines/metabolism , Animals , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/therapy , Disease Management , Lymphohistiocytosis, Hemophagocytic/therapy , Lymphohistiocytosis, Hemophagocytic/etiology , Lymphohistiocytosis, Hemophagocytic/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
3.
Blood ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905637

ABSTRACT

Immune effector cell-associated neurotoxicity syndrome (ICANS) is a common but potentially severe adverse event associated with chimeric antigen receptor T-cell (CART) therapy characterized by the development of acute neurologic symptoms following CART infusion. ICANS encompasses a wide clinical spectrum typified by mild to severe encephalopathy, seizures and/or cerebral edema. As more patients have been treated with CART new ICANS phenomenology has emerged. We present the clinical course of five children who developed acute onset of quadriparesis or paraparesis associated with abnormal brain and/or spine neuroimaging after infusion of CD19 or CD22-directed CART, adverse events not previously reported in children. Orthogonal data from autopsy studies, cerebrospinal fluid (CSF) flow cytometry and CSF proteomics/cytokine profiling demonstrated chronic white matter destruction, but a notable lack of inflammatory pathologic changes and cell populations. Instead, children with quadriparesis or paraparesis post-CART therapy had lower levels of pro-inflammatory cytokines such as interferon gamma (IFN), CCL17, CCL23, and CXCL10 than those who did not develop quadriparesis or paraparesis. Taken together, these findings imply a non-inflammatory source of this newly described ICANS phenomenon in children. The pathophysiology of some neurologic symptoms following CART may therefore have a more complex etiology than exclusive T-cell activation and excessive cytokine production.

4.
Blood Adv ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861351

ABSTRACT

Multiple chimeric antigen receptor (CAR) T cell therapies are FDA approved, and several are under development. While effective for some cancers, toxicities remain a limitation. The most common toxicities, i.e. cytokine release syndrome (CRS) and immune effector cell associated neurotoxicity syndrome (ICANS), are well described. With increasing utilization, providers worldwide are reporting on other emergent, and often complicated toxicities. Given the evolving toxicity profiles and urgent need to catalogue these emerging and emergent CAR T toxicities and describe management approaches, the American Society of Hematology Subcommittee on Emerging Gene and Cell Therapies organized the first Scientific Workshop on CAR T cell toxicities during the annual society meeting. The workshop functioned to 1) aggregate reports of CAR T emergent toxicities, including movement disorders after BCMA CAR T, coagulation abnormalities, and prolonged cytopenias; 2) disseminate bedside to bench efforts elucidating pathophysiological mechanisms of CAR-T toxicities, including the intestinal microbiota and systemic immune dysregulation; and 3) highlight gaps in the availability of clinical tests such as cytokine measurements, which could be utilized to expand our knowledge around the monitoring of toxicities. Key themes emerged. First, while clinical manifestations may develop before the pathophysiologic mechanisms are understood, these must be studied to aid in the detection and prevention of such toxicities. Second, systemic immune dysregulation appears central to these emergent toxicities and research is needed to elucidate links between tumor, CAR T, and microbiota. Finally, there was consensus around an urgency to create a repository to capture emergent CAR-T toxicities and the real-world management.

5.
Cell ; 187(12): 3120-3140.e29, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38714197

ABSTRACT

Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Mesenchymal Stem Cells , Proteomics , Single-Cell Analysis , Transcriptome , Humans , Single-Cell Analysis/methods , Bone Marrow/metabolism , Hematopoietic Stem Cells/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Proteomics/methods , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Hematopoiesis , Stem Cell Niche , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology
6.
EClinicalMedicine ; 72: 102604, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38680517

ABSTRACT

Our objective was to update a clinical practice guideline for the prevention and treatment of Clostridioides difficile infection (CDI) in pediatric patients with cancer and hematopoietic cell transplantation recipients. We reconvened an international multi-disciplinary panel. A systematic review of randomized controlled trials (RCTs) for the prevention or treatment of CDI in any population was updated and identified 31 new RCTs. Strong recommendations were made to use either oral metronidazole or oral vancomycin for non-severe CDI treatment, and to use either oral vancomycin or oral fidaxomicin for severe CDI. A strong recommendation that fecal microbiota transplantation should not be routinely used to treat CDI was also made. The panel made two new good practice statements to follow infection control practices including isolation in patients experiencing CDI, and to minimize systemic antibacterial administration where feasible, especially in patients who have experienced CDI.

7.
Pediatr Blood Cancer ; 71(6): e30909, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38469996

ABSTRACT

Children with sickle cell disease (SCD) are at risk of complications from viral infections, including SARS-CoV-2. We present the clinical characteristics and outcomes of pediatric patients with SCD from the Pediatric COVID-19 United States Registry who developed acute COVID-19 due to SARS-CoV-2 infection (n = 259) or multisystem inflammatory syndrome in children (MIS-C; n = 4). Nearly half of hospitalized children with SCD and SARS-CoV-2 infection required supplemental oxygen, though children with SCD had fewer intensive care (ICU) admissions compared to the general pediatric and immunocompromised populations. All registry patients with both SCD and MIS-C required ICU admission. Children with SCD are at risk of severe disease with SARS-CoV-2 infection, highlighting the importance of vaccination in this vulnerable population.


Subject(s)
Anemia, Sickle Cell , COVID-19 , COVID-19/complications , Registries , SARS-CoV-2 , Humans , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/epidemiology , Anemia, Sickle Cell/therapy , COVID-19/epidemiology , Child , Female , Male , Adolescent , United States/epidemiology , Child, Preschool , Infant , Systemic Inflammatory Response Syndrome/epidemiology , Systemic Inflammatory Response Syndrome/etiology , Hospitalization/statistics & numerical data
8.
Mol Ther ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38532629

ABSTRACT

With expansion of chimeric antigen receptor (CAR) T cell therapy and broader utilization of anti-cytokine directed therapeutics for toxicity mitigation, the routine assessment of cytokines may enhance understanding of toxicity profiles, guide therapeutic interventions, and facilitate cross-trial comparisons. As specific cytokine elevations can correlate with and provide insights into CAR T cell toxicity, mitigation strategies, and response, we explored the reporting of cytokine detection methods and assessed for the correlation of cytokines to cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) across clinical trials. In this analysis, we reviewed 21 clinical trials across 60 manuscripts that featured a US Food and Drug Administration-approved CAR T cell construct or one of its predecessors. We highlight substantial variability and limited reporting of cytokine measurement platforms and panels used across CAR T cell clinical trials. Specifically, across 60 publications, 28 (46.7%) did not report any cytokine data, representing 6 of 21 (28.6%) clinical trials. In the 15 trials reporting cytokine data, at least 4 different platforms were used. Furthermore, correlation of cytokines with ICANS, CRS, and CRS severity was limited. Considering the fundamental role of cytokines in CAR T cell toxicity, our manuscript supports the need to establish standardization of cytokine measurements as a key biomarker essential to improving outcomes of CAR T cell therapy.

9.
Bull Cancer ; 111(4): 356-362, 2024 Apr.
Article in French | MEDLINE | ID: mdl-38453587

ABSTRACT

INTRODUCTION: Evaluating the benefits and risks of prolonged hormonal treatment with aromatase inhibitors (AIs) for treating hormone-dependent breast cancer. METHODS: A systematic review and meta-analysis was conducted. Studies reporting on randomized clinical trials concerning prolongating hormonal therapy with AIs as compared to a placebo or no prolongation, after an initial five years of hormonal therapy, were eligible. RESULTS: Seven clinical trials were included. Prolonged AI therapy was associated with a statistically significant improvement in disease-free survival (RR=0.70, 95% CI 0.60 to 0.80). A statistically significant increase was observed for osteoporosis (RR=1.17, 95% CI 1.03 to 1.33), hot flushes/flashes (RR=1.27, 95% CI 1.08 to 1.49), myalgia (RR=1.23, 95% CI 1.09 to 1.39), fractures (RR=1.26, 95% CI 1.09 to 1.45) and arthralgia (RR=1.17, 95% CI 1.10 to 1.25). However, no statistically significant association was observed between prolonged AI therapy and overall survival, cardiovascular events, and bone pain. DISCUSSION: Prolonged AI therapy has significant benefits in terms of disease-free survival in women with hormone-dependent breast cancer. However, adverse effects and a lack of evidence for a benefit on overall survival must be considered in the decision-making process regarding adjuvant hormone therapy extension.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/drug therapy , Aromatase Inhibitors/adverse effects , Combined Modality Therapy , Chemotherapy, Adjuvant/adverse effects , Adjuvants, Immunologic/therapeutic use , Hormones/therapeutic use , Antineoplastic Agents, Hormonal/adverse effects , Tamoxifen/adverse effects
10.
Lipids Health Dis ; 23(1): 59, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414008

ABSTRACT

Cancer cells need constant supplies of lipids to survive and grow. Lipid dependence has been observed in various types of cancer, including high-grade serous ovarian carcinomas (HGSOC), which is a lethal form of gynecological malignancy. ANGPTL3, PCSK9, and Apo CIII are pivotal lipid-modulating factors, and therapeutic antibodies have been developed against each one (Evinacumab, Evolocumab and Volanesorsen, respectively). The roles -if any- of ANGPTL3, PCSK9, and Apo CIII in HGSOC are unclear. Moreover, levels of these lipid-modulating factors have never been reported before in HGSOC. In this study, circulating levels of ANGPTL3, PCSK9, and Apo CIII, along with lipid profiles, are examined to verify whether one or many of these lipid-regulating factors are associated with HGSOC. Methods ELISA kits were used to measure ANGPTL3, PCSK9 and Apo CIII levels in plasma samples from 31 women with HGSOC and 40 women with benign ovarian lesions (BOL) before treatment and surgery. A Roche Modular analytical platform measured lipid panels, Apo B and Lp(a) levels.Results ANGPTL3 levels were higher in women with HGSOC (84 ng/mL, SD: 29 ng/mL, n = 31) than in women with BOL (67 ng/mL, SD: 31 ng/mL, n = 40; HGSOC vs. BOL P = 0.019). Associations between the lipid panel and ANGPTL3, and the inverse relationship between HDL-cholesterol and triglycerides, were present in women with BOL but not with HGSOC. PCSK9 and Apo CIII were not associated with HGSOC.Conclusions In this cohort of 71 women, ANGPTL3 levels were increased in HGSOC patients. The presence of HGSOC disrupted the classic inverse relationship between HDL and triglycerides, as well as the association between the lipid panel and ANGPTL3. These associations were only maintained in cancer-free women. Given the availability of Evinacumab, a therapeutic antibody against ANGPTL3, the current finding prompts an assessment of whether ANGPTL3 inhibition has therapeutic potential in HGSOC.


Subject(s)
Carcinoma , Ovarian Cysts , Ovarian Neoplasms , Humans , Female , Proprotein Convertase 9 , Angiopoietin-like Proteins/genetics , Angiopoietin-Like Protein 3 , Ovarian Neoplasms/drug therapy , Triglycerides , Angiopoietins/genetics
11.
medRxiv ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38293197

ABSTRACT

Multisystem Inflammatory Syndrome in Childhood (MIS-C) follows SARS-CoV-2 infection and frequently leads to intensive care unit admission. The inability to rapidly discriminate MIS-C from similar febrile illnesses delays treatment and leads to misdiagnosis. To identify diagnostic discriminators at the time of emergency department presentation, we enrolled 104 children who met MIS-C screening criteria, 14 of whom were eventually diagnosed with MIS-C. Before treatment, we collected breath samples for volatiles and peripheral blood for measurement of plasma proteins and immune cell features. Clinical and laboratory features were used as inputs for a machine learning model to determine diagnostic importance. MIS-C was associated with significant changes in breath volatile organic compound (VOC) composition as well as increased plasma levels of secretory phospholipase A2 (PLA2G2A) and lipopolysaccharide binding protein (LBP). In an integrated model of all analytes, the proportion of TCRVß21.3+ non-naive CD4 T cells expressing Ki-67 had a high sensitivity and specificity for MIS-C, with diagnostic accuracy further enhanced by low sodium and high PLA2G2A. We anticipate that accurate diagnosis will become increasingly difficult as MIS-C becomes less common. Clinical validation and application of this diagnostic model may improve outcomes in children presenting with multisystem febrile illnesses.

12.
Transplant Cell Ther ; 30(2): 155-170, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37863355

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has revolutionized the treatment of B cell malignancies, with multiple CAR T cell products approved for numerous indications by regulatory agencies worldwide. However, significant work remains to be done to enhance these treatments. In March 2023, a group of experts in CAR T cell therapy assembled at the National Institutes of Health in Bethesda, Maryland at the Insights in Pediatric CAR T Cell Immunotherapy: Recent Advances and Future Directions (INSPIRED) Symposium to identify key areas for research for the coming years. In session 4B, correlative studies to be incorporated into future clinical trials and real-world settings were discussed. Active areas of research identified included (1) optimizing CAR T cell product manufacturing; (2) ensuring adequate lymphodepletion prior to CAR T cell administration; (3) overcoming immunoregulatory cells and tumor stroma present in the tumor microenvironment, particularly in solid tumors; (4) understanding tumor intrinsic properties that lead to CAR T cell immunotherapy resistance; and (5) uncovering biomarkers predictive of treatment resistance, treatment durability, or immune-related adverse events. Here we review the results of previously published clinical trials and real-world studies to summarize what is currently known about each of these topics. We then outline priorities for future research that we believe will be important for improving our understanding of CAR T cell therapy and ultimately leading to better outcomes for patients.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , United States , Humans , Child , Receptors, Chimeric Antigen/genetics , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/therapeutic use , Neoplasms/therapy , Immunotherapy, Adoptive/adverse effects , Tumor Microenvironment
13.
Article in English | MEDLINE | ID: mdl-38160047

ABSTRACT

OBJECTIVES: The primary objective was to determine if individualised yoga for hospitalised children receiving intensive chemotherapy was associated with less fatigue using the Pediatric Quality of Life Inventory Multidimensional Fatigue Scale (PedsQL MFS) compared with iPad control. METHODS: This was a multicentre randomised controlled trial of individualised yoga in paediatric patients aged 8-18 years who were inpatients receiving intensive chemotherapy for leukaemia, lymphoma or haematopoietic cell transplantation. Participants were randomised to yoga or iPad groups; allocated programme was delivered individually by trained yoga instructors 5 days/week for 21 days. The primary outcome was day 21 guardian-reported general fatigue using the PedsQL MFS. Secondary outcomes included day 21 PedsQL sleep/rest and cognitive fatigue, Fatigue Scale and PedsQL Acute Cancer Module, and systemic opioid administration. RESULTS: The study was closed early for poor accrual when 125/210 planned participants had been enrolled and randomised to yoga (n=62) or iPad (n=63). Guardian-reported PedsQL MFS general fatigue scores on day 21 were not significantly different between groups (adjusted difference 7.2, 95% CI -2.6 to 16.9) in favour of yoga. However, day 21 cognitive fatigue (adjusted difference 9.0, 95% CI 0.9 to 17.1), cognitive problems (adjusted difference 11.2, 95% CI 3.5 to 19.0) and communication (adjusted difference 10.6, 95% CI 0.8 to 20.4) were significantly better in the yoga compared with the iPad group. There were no significant differences in the other secondary outcomes including PedsQL sleep/rest fatigue (adjusted difference 4.9, 95% CI -3.5 to 13.3). CONCLUSIONS: The effect of individualised yoga on general fatigue is uncertain in paediatric patients receiving intensive chemotherapy. However, yoga significantly improved cognitive fatigue and cognitive problems. TRIAL REGISTRATION NUMBER: NCT02134782.

14.
Res Sq ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37961674

ABSTRACT

Refractoriness to initial chemotherapy and relapse after remission are the main obstacles to cure in T-cell Acute Lymphoblastic Leukemia (T-ALL). Biomarker guided risk stratification and targeted therapy have the potential to improve outcomes in high-risk T-ALL; however, cellular and genetic factors contributing to treatment resistance remain unknown. Previous bulk genomic studies in T-ALL have implicated tumor heterogeneity as an unexplored mechanism for treatment failure. To link tumor subpopulations with clinical outcome, we created an atlas of healthy pediatric hematopoiesis and applied single-cell multiomic (CITE-seq/snATAC-seq) analysis to a cohort of 40 cases of T-ALL treated on the Children's Oncology Group AALL0434 clinical trial. The cohort was carefully selected to capture the immunophenotypic diversity of T-ALL, with early T-cell precursor (ETP) and Near/Non-ETP subtypes represented, as well as enriched with both relapsed and treatment refractory cases. Integrated analyses of T-ALL blasts and normal T-cell precursors identified a bone-marrow progenitor-like (BMP-like) leukemia sub-population associated with treatment failure and poor overall survival. The single-cell-derived molecular signature of BMP-like blasts predicted poor outcome across multiple subtypes of T-ALL within two independent patient cohorts using bulk RNA-sequencing data from over 1300 patients. We defined the mutational landscape of BMP-like T-ALL, finding that NOTCH1 mutations additively drive T-ALL blasts away from the BMP-like state. We transcriptionally matched BMP-like blasts to early thymic seeding progenitors that have low NR3C1 expression and high stem cell gene expression, corresponding to a corticosteroid and conventional cytotoxic resistant phenotype we observed in ex vivo drug screening. To identify novel targets for BMP-like blasts, we performed in silico and in vitro drug screening against the BMP-like signature and prioritized BMP-like overexpressed cell-surface (CD44, ITGA4, LGALS1) and intracellular proteins (BCL-2, MCL-1, BTK, NF-κB) as candidates for precision targeted therapy. We established patient derived xenograft models of BMP-high and BMP-low leukemias, which revealed vulnerability of BMP-like blasts to apoptosis-inducing agents, TEC-kinase inhibitors, and proteasome inhibitors. Our study establishes the first multi-omic signatures for rapid risk-stratification and targeted treatment of high-risk T-ALL.

15.
Genes (Basel) ; 14(9)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37761820

ABSTRACT

The hypermethylation status of the promoter region of the breast cancer 1 (BRCA1), a well-known tumor suppressor gene, has been extensively investigated in the last two decades as a potential biomarker for breast cancer. In this retrospective study, we investigated the prevalence of BRCA1 promoter methylation in 84 human breast tissues, and we correlated this epigenetic silencing with the clinical and histopathological parameters of breast cancer. We used methylation-specific PCR (MSP) to analyze BRCA1 promoter hypermethylation in 48 malignant breast tumors (MBTs), 15 normal adjacent tissues (NATs), and 21 benign breast lesions (BBLs). The results showed that BRCA1 promoter hypermethylation was higher in MBTs (20/48; 41.67%) and NATs (7/15; 46.67%) compared to BBLs (4/21; 19.05%). The high percentage of BRCA1 hypermethylation in the histologically normal adjacent tissues to the tumors (NATs) suggests the involvement of this epigenetic silencing as a potential biomarker of the early genomic instability in NATs surrounding the tumors. The detection of BRCA1 promoter hypermethylation in BBLs reinforces this suggestion, knowing that a non-negligible rate of benign breast lesions was reported to evolve into cancer. Moreover, our results indicated that the BRCA1 promoter hypermethylated group of MBTs exhibited higher rates of aggressive features, as indicated by the SBR III grade (14/19; 73.68%), elevated Ki67 levels (13/16; 81.25%), and Her2 receptor overexpression (5/20; 25%). Finally, we observed a concordance (60%) in BRCA1 promoter hypermethylation status between malignant breast tumors and their paired histologically normal adjacent tissues. This study highlights the role of BRCA1 promoter hypermethylation as a potential useful biomarker of aggressiveness in MBTs and as an early marker of genomic instability in both histological NATs and BBLs.

17.
J Clin Med ; 12(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37445276

ABSTRACT

Breast cancer (BC) is a heterogenous disease classified into four molecular subtypes (Luminal A, Luminal B, HER2 and triple-negative (TNBC)) depending on the expression of the estrogen receptor (ER), the progesterone receptor (PR) and the human epidermal receptor 2 (HER2). The development of effective treatments for BC, especially TNBC, remains a challenge. Aminosteroid derivative RM-581 has previously shown an antiproliferative effect in multiple cancers in vitro and in vivo. In this study, we evaluated its effect in BC cell lines representative of BC molecular subtypes, including metastatic TNBC. We found that RM-581 has an antiproliferative effect on all BC molecular subtypes, especially on Luminal A and TNBC, in 2D and 3D cultures. The combination of RM-581 and trastuzumab or trastuzumab-emtansine enhanced the anticancer effect of each drug for HER2-positive BC cell lines, and the combination of RM-581 and taxanes (docetaxel or paclitaxel) improved the antiproliferative effect of RM-581 in TNBC and metastatic TNBC cell lines. We also confirmed that RM-581 is an endoplasmic reticulum (EnR)-stress aggravator by inducing an increase in EnR-stress-induced apoptosis markers such as BIP/GRP78 and CHOP and disrupting lipid homeostasis. This study demonstrates that RM-581 could be effective for the treatment of BC, especially TNBC.

18.
Cancers (Basel) ; 15(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37190179

ABSTRACT

A human transcriptome array on ERα-positive breast cancer continuum of risk identified Secreted Frizzled-Related Protein 1 (SFRP1) as decreased during breast cancer progression. In addition, SFRP1 was inversely associated with breast tissue age-related lobular involution, and differentially regulated in women with regard to their parity status and the presence of microcalcifications. The causal role of SFRP1 in breast carcinogenesis remains, nevertheless, not well understood. In this study, we characterized mammary epithelial cells from both nulliparous and multiparous mice in organoid culture ex vivo, in the presence of estradiol (E2) and/or hydroxyapatite microcalcifications (HA). Furthermore, we have modulated SFRP1 expression in breast cancer cell lines, including the MCF10A series, and investigated their tumoral properties. We observed that organoids obtained from multiparous mice were resistant to E2 treatment, while organoids obtained from nulliparous mice developed the luminal phenotype associated with a lower ratio between Sfrp1 and Esr1 expression. The decrease in SFRP1 expression in MCF10A and MCF10AT1 cell lines increased their tumorigenic properties in vitro. On the other hand, the overexpression of SFRP1 in MCF10DCIS, MCF10CA1a, and MCF7 reduced their aggressiveness. Our results support the hypothesis that a lack of SFRP1 could have a causal role in early breast carcinogenesis.

19.
Blood Adv ; 7(16): 4418-4430, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37171449

ABSTRACT

Many hematologic malignancies are not curable with chemotherapy and require novel therapeutic approaches. Chimeric antigen receptor (CAR) T-cell therapy is 1 such approach that involves the transfer of T cells engineered to express CARs for a specific cell-surface antigen. CD38 is a validated tumor antigen in multiple myeloma (MM) and T-cell acute lymphoblastic leukemia (T-ALL) and is also overexpressed in acute myeloid leukemia (AML). Here, we developed human CD38-redirected T cells (CART-38) as a unified approach to treat 3 different hematologic malignancies that occur across the pediatric-to-adult age spectrum. Importantly, CD38 expression on activated T cells did not impair CART-38 cells expansion or in vitro function. In xenografted mice, CART-38 mediated the rejection of AML, T-ALL, and MM cell lines and primary samples and prolonged survival. In a xenograft model of normal human hematopoiesis, CART-38 resulted in the expected reduction of hematopoietic progenitors, which warrants caution and careful monitoring of this potential toxicity when translating this new immunotherapy into the clinic. Deploying CART-38 against multiple CD38-expressing malignancies is significant because it expands the potential for this novel therapy to affect diverse patient populations.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Receptors, Chimeric Antigen , Adult , Animals , Child , Humans , Mice , Hematologic Neoplasms/therapy , Hematologic Neoplasms/metabolism , Leukemia, Myeloid, Acute/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL