ABSTRACT
Human exposure to mercury is a leading public health problem. Artisanal and small-scale gold mining (ASGM) is a major source of global mercury emissions. Although occupational mercury exposure to miners (via mercury vapor inhalation) is known, chronic mercury exposure to nearby residents that are not miners (via mercury-contaminated fish consumption) is poorly characterized. We conducted a population-based mercury exposure assessment in 23 communities (19 rural, 4 urban) around the Amarakaeri Communal Reserve, which is bordered on the east by heavy ASGM activity. We measured total mercury in hair (N = 2083) and blood (N = 476) from March-June 2015 and performed follow-up measurements (N = 723 hair and N = 290 blood) from February-April 2016. Mercury exposure risk was highest in communities classified as indigenous, or native, regardless of proximity to mining activity. Residence in a native community (vs. non-native) was associated with mercury levels 1.9 times higher in hair (median native 3.5 ppm vs. median non-native 1.4 ppm total mercury) and 1.6 times higher in blood (median native 7.4 ng/mL vs median non-native 3.2 ng/mL total mercury). Unexpectedly, proximity to mining was not associated with exposure risk. These findings challenge common assumptions about mercury exposure patterns and emphasize the importance of population-representative studies to identify high risk sub-populations.
Subject(s)
Gold , Mercury , Animals , Environmental Exposure/analysis , Humans , Mercury/analysis , Mining , PeruABSTRACT
Artisanal and small-scale gold mining (ASGM) is a significant contributor of mercury (Hg) contamination and deforestation across the globe. In the Colorado River watershed in Madre de Dios, Peru, mining and deforestation have increased exponentially since the 1980s, resulting in major socioeconomic shifts in the region and two national state of emergency (2016 and 2019) in response to concerns for wide-scale mercury poisoning by these activities. This research employed a watershed-scale soil particle detachment model and environmental field sampling to estimate the role of land cover change and soil erosion on river transport of Hg in a heavily ASGM-impacted watershed. The model estimated that observed decreases in forest cover increased soil mobilization by a factor of two in the Colorado River watershed during the 18 year period and by 4-fold in the Puquiri subwatershed (the area of most concentrated ASGM activity). If deforestation continues to increase at its current exponential rate through 2030, the annual mobilization of soil and Hg may increase by an additional 20-25% relative to 2014 levels. While, the estimated total mass of Hg transported by rivers is substantially less than the estimated tons of Hg used with ASGM in Peru, this research shows that deforestation associated with ASGM is an additional mechanism for mobilizing naturally occurring and anthropogenic Hg from terrestrial landscapes to aquatic environments in the region, potentially leading to bioaccumulation in fish and exposure to communities downstream.
Subject(s)
Mercury , Water Pollutants, Chemical , Animals , Conservation of Natural Resources , Environmental Monitoring , Gold , Mining , Peru , SoilABSTRACT
Artisanal and small-scale gold mining (ASGM) is a major contributor to deforestation and the largest anthropogenic source of atmospheric mercury worldwide. Despite significant information on the direct health impacts of mercury to ASGM miners, the impact of mercury contamination on downstream communities has not been well characterized, particularly in Peru's Madre de Dios region. In this area, ASGM has increased significantly since 2000 and has led to substantial political and social controversy. This research examined the spatial distribution and transport of mercury through the Madre de Dios River with distance from ASGM activity. This study also characterized risks for dietary mercury exposure to local residents who depend on fish from the river. River sediment, suspended solids from the water column, and fish samples were collected in 2013 at 62 sites near 17 communities over a 560 km stretch of the Madre de Dios River and its major tributaries. In areas downstream of known ASGM activity, mercury concentrations in sediment, suspended solids, and fish within the Madre de Dios River were elevated relative to locations upstream of mining. Fish tissue mercury concentrations were observed at levels representing a public health threat, with greater than one-third of carnivorous fish exceeding the international health standard of 0.5 mg kg(-1). This study demonstrates that communities located hundreds of kilometers downstream of ASGM activity, including children and indigenous populations who may not be involved in mining, are at risk of dietary mercury exposure that exceed acceptable body burdens. This report represents the first systematic study of the region to aid policy decision-making related to ASGM activities in Peru.