Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann N Y Acad Sci ; 960: 69-99, 2002 Apr.
Article in English | MEDLINE | ID: mdl-11971792

ABSTRACT

Design and measurements of molecular wires, switches, and memories offer an increased device capability with reduced elements. We report: Measurements on through-bond electronic transport properties of nanoscale metal-1,4-phenylene diisocyanide-metal junctions are reported, where nonohmic thermionic emission is the dominant process, with isocyanide-Pd showing the lowest thermionic barrier of 0.22 eV; robust and large reversible switching behavior in an electronic device that utilizes molecules containing redox centers as the active component, exhibiting negative differential resistance (NDR) and large on-off peak-to-valley ratio (PVR) are realized; erasable storage of higher conductivity states in these redox-center-containing molecular devices are observed; and a two-terminal electronically programmable and erasable molecular memory cell with long bit retention time is demonstrated.


Subject(s)
Electrons , Oxidation-Reduction , Cyanides/chemistry , Electric Conductivity , Electric Impedance , Electron Transport , Information Storage and Retrieval , Lead/chemistry , Models, Chemical , Models, Theoretical , Temperature
3.
Chemistry ; 7(23): 5118-34, 2001 Dec 03.
Article in English | MEDLINE | ID: mdl-11775685

ABSTRACT

Presented here are several convergent synthetic routes to conjugated oligo(phenylene ethynylene)s. Some of these oligomers are free of functional groups, while others possess donor groups, acceptor groups, porphyrin interiors, and other heterocyclic interiors for various potential transmission and digital device applications. The syntheses of oligo(phenylene ethynylene)s with a variety of end groups for attachment to numerous metal probes and surfaces are presented. Some of the functionalized molecular systems showed linear, wire-like, current versus voltage (I(V)) responses, while others exhibited nonlinear I(V) curves for negative differential resistance (NDR) and molecular random access memory effects. Finally, the syntheses of functionalized oligomers are described that can form self-assembled monolayers on metallic electrodes that reduce the Schottky barriers. Information from the Schottky barrier studies can provide useful insight into molecular alligator clip optimizations for molecular electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...