Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Immunol Immunother ; 73(3): 45, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349430

ABSTRACT

BACKGROUND: Aggressive B cell lymphoma with secondary central nervous system (CNS) involvement (SCNSL) carries a dismal prognosis. Chimeric antigen receptor (CAR) T cells (CAR-T) targeting CD19 have revolutionized the treatment for B cell lymphomas; however, only single cases with CNS manifestations successfully treated with CD19 CAR-T have been reported. METHODS: We prospectively enrolled 4 patients with SCNSL into our study to assess clinical responses and monitor T cell immunity. RESULTS: Two of four SNCSL patients responded to the CD19-targeted CAR-T. Only one patient showed a substantial expansion of peripheral (PB) CAR-T cells with an almost 100-fold increase within the first week after CAR-T. The same patient also showed marked neurotoxicity and progression of the SNCSL despite continuous surface expression of CD19 on the lymphoma cells and an accumulation of CD4+ central memory-type CAR-T cells in the CNS. Our studies indicate that the local production of chemokine IP-10, possibly through its receptor CXCR3 expressed on our patient's CAR-T, could potentially have mediated the local accumulation of functionally suboptimal anti-tumor T cells. CONCLUSIONS: Our results demonstrate expansion and homing of CAR-T cells into the CNS in SNCSL patients. Local production of chemokines such as IP-10 may support CNS infiltration by CAR-T cells but also carry the potential of amplifying local toxicity. Future studies investigating numbers, phenotype, and function of CAR-T in the different body compartments of SNSCL patients receiving CAR-T will help to improve local delivery of "fit" and highly tumor-reactive CAR-T with low off-target reactivity into the CNS.


Subject(s)
Central Nervous System Neoplasms , Lymphoma , Receptors, Chimeric Antigen , Humans , Chemokine CXCL10 , Central Nervous System Neoplasms/therapy , Antigens, CD19
2.
Cytotherapy ; 26(4): 318-324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340107

ABSTRACT

BACKGROUND AIMS: Chimeric antigen receptor (CAR) T-cell (CAR-T) therapies have revolutionized the treatment of B-cell lymphomas. Unfortunately, relapses after CD19-targeted CAR-T are relatively common and, therefore, there is a critical need for assays able to assess the function and potency of CAR-T products pre-infusion, which will hopefully help to optimize CAR-T therapies. We developed a novel multicolor fluorescent spot assay (MFSA) for the functional assessment of CAR-T products on a single-cell level, combining the numerical assessment of CAR-T products with their functional characterization. METHODS: We first used a standard single-cell interferon (IFN)-γ enzyme-linked immune absorbent spot assay to measure CD19-targeted CAR-T responses to CD19-coated beads. We then developed, optimized and validated an MFSA that simultaneously measures the secretion of combinations of different cytokines on a single CAR-T level. RESULTS: We identified IFN-γ/tumor necrosis factor-α/granzyme B as the most relevant cytokine combination, and we used our novel MFSA to functionally and numerically characterize two clinical-grade CAR-T products. CONCLUSIONS: In conclusion, we have developed a novel assay for the quantitative and functional potency assessment of CAR-T products. Our optimized MFSA is cost-effective, easy to perform, reliable, can be performed overnight, allowing for a fast delivery of the product to the patient, and requires relatively minimal maintenance and training. The clinical value of our novel assay will be assessed in studies correlating the pre-infusion assessment of CAR-T products with the patients' outcome in a prospective fashion.


Subject(s)
Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Neoplasm Recurrence, Local , Immunotherapy, Adoptive , Cytokines , Antigens, CD19 , T-Lymphocytes , Receptors, Antigen, T-Cell/genetics
4.
Hum Vaccin Immunother ; 19(2): 2216116, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37278257

ABSTRACT

Post-transplant lymphoproliferative disorder (PTLD) is a potentially fatal complication following kidney transplantation, and there is a critical and unmet need for PTLD treatments associated with more pronounced and durable responses. To date, reports on the use of CD19-targeted chimeric antigen receptor (CAR) T (CAR-T) cells in patients after solid organ transplant (SOT) have been anecdotal, clinical presentations and outcomes have been heterogenous, and a longitudinal analysis of CAR-T cell expansion and persistence in PTLD patients has not been reported. Our report describes a patient with a history of renal transplant who received CD19-directed CAR-T cell therapy for the treatment of refractory PTLD, diffuse large B cell lymphoma (DLBCL)-type. We show that even with the background of prolonged immunosuppression for SOT, it is possible to generate autologous CAR-T products capable of expansion and persistence in vivo, without evidence of excess T-cell exhaustion. Our data indicate that CAR-T cells generated from a SOT recipient with PTLD can yield deep remissions without increased toxicity or renal allograft dysfunction. Future clinical studies should build on these findings to investigate CAR-T therapy, including longitudinal monitoring of CAR-T phenotype and function, for PTLD in SOT recipients.


Subject(s)
Kidney Transplantation , Lymphoproliferative Disorders , Organ Transplantation , Receptors, Chimeric Antigen , Humans , Kidney Transplantation/adverse effects , Receptors, Chimeric Antigen/therapeutic use , Organ Transplantation/adverse effects , Lymphoproliferative Disorders/etiology , Lymphoproliferative Disorders/therapy , T-Lymphocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...