Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Allergy Clin Immunol Pract ; 10(11): 2925-2934.e12, 2022 11.
Article in English | MEDLINE | ID: mdl-35863669

ABSTRACT

BACKGROUND: Mepolizumab inhibits IL-5 activity and reduces exacerbation frequency and maintenance oral corticosteroid (OCS) dosage in patients with severe eosinophilic asthma (SEA). Some patients remain dependent on OCS despite anti-IL-5 treatment, suggesting residual corticosteroid-responsive mechanisms. OBJECTIVE: To determine the clinical and anti-inflammatory effects of OCS in patients with SEA on mepolizumab. METHODS: We conducted a randomized, triple-blind, placebo-controlled crossover trial of prednisolone (0.5 mg/kg/d, maximum 40 mg/d, for 14 ± 2 days) in adults with SEA after 12 or more weeks of mepolizumab. We compared change in asthma symptoms, quality of life, lung function measured by spirometry and airwave oscillometry, fractional exhaled nitric oxide, and blood and sputum eosinophil cell count after prednisolone and placebo treatment. RESULTS: A total of 27 patients completed the study. Prednisolone did not improve 5-item Asthma Control Questionnaire (mean difference in change for prednisolone vs placebo, -0.23; 95% CI, -0.58 to 0.11), mini-Asthma Quality of Life Questionnaire (0.03; 95% CI, -0.26 to 0.42), St. George's Respiratory Questionnaire (0.24; 95% CI, -3.20 to 3.69), or Visual Analogue Scale scores for overall asthma symptoms (0.11; 95% CI, -0.58 to 0.80). The mean difference for FEV1 in favor of prednisolone was 105 mL (95% CI, -4 to 213 mL); forced expiratory flow at 25% and 75% 484 mL/s (95% CI, 151 to 816 mL/s); fractional exhaled nitric oxide reduction 41% (95% CI, 25% to 54%); blood eosinophil count reduction 49% (95% CI, 31% to 62%); and percentage of sputum eosinophil reduction 71% (95% CI, 26% to 89%). CONCLUSIONS: OCS improved small-airway obstruction and reduced biomarkers of type 2 inflammation but had no significant effect on symptoms or quality of life in patients with SEA receiving treatment with mepolizumab.


Subject(s)
Acer , Anti-Asthmatic Agents , Asthma , Pulmonary Eosinophilia , Adult , Humans , Quality of Life , Cross-Over Studies , Pulmonary Eosinophilia/drug therapy , Adrenal Cortex Hormones/therapeutic use , Prednisolone/therapeutic use , Eosinophils
2.
Am J Respir Crit Care Med ; 206(5): 545-553, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35549845

ABSTRACT

Rationale: The past 25 years have seen huge progress in understanding of the pathobiology of type-2 (T2) asthma, identification of measurable biomarkers, and the emergence of novel monoclonal antibody treatments. Although present in a minority of patients with severe asthma, very little is known about the mechanisms underlying T2-low asthma, making it a significant unmet need in asthma research. Objectives: The objective of this study was to explore the differences between study exacerbators and nonexacerbators, to describe physiological changes at exacerbation in those who are T2HIGH and T2LOW at the time of exacerbation, and to evaluate the stability of inflammatory phenotypes when stable and at exacerbation. Methods: Exacerbation assessment was a prespecified secondary analysis of data from a 48-week, multicenter, randomized controlled clinical study comparing the use of biomarkers and symptoms to adjust steroid treatment in a T2-low severe asthma-enriched cohort. Participants were phenotyped as T2LOW (fractional exhaled nitric oxide ⩽ 20 ppb and blood eosinophil count ⩽ 150 cells/µl) or T2HIGH (fractional exhaled nitric oxide > 20 or blood eosinophil count > 150) at study enrollment and at each exacerbation. Here, we report the findings of the exacerbation analyses, including comparison of exacerbators and nonexacerbators, the physiological changes at exacerbation in those who had evidence of T2 biology at exacerbation versus those that did not, and the stability of inflammatory phenotypes when stable and at exacerbation. Measurements and Main Results: Of the 301 participants, 60.8% (183) had one or more self-reported exacerbations (total of 390). Exacerbators were more likely to be female, have a higher body mass index, and have more exacerbations requiring oral corticosteroid and unscheduled primary care attendances for exacerbations. At enrollment, 23.6% (71) were T2LOW and 76.4% (230) T2HIGH. The T2LOW group had more asthma primary care attendances, were more likely to have a previous admission to HDU (high dependency unit)/ICU and to be receiving maintenance oral corticosteroids. At exacerbation, the T2LOW events were indistinguishable from T2HIGH exacerbations in terms of lung function (mean fall in T2LOW FEV1, 200 [400] ml vs. T2HIGH 200 [300] ml; P = 0.93) and symptom increase (ACQ5: T2LOW, 1.4 [0.8] vs. T2HIGH, 1.3 [0.8]; P = 0.72), with no increase in T2 biomarkers from stable to exacerbation state in the T2LOW exacerbations. The inflammatory phenotype within individual patients was dynamic; inflammatory phenotype at study entry did not have a significant association with exacerbation phenotype. Conclusions: Asthma exacerbations demonstrating a T2LOW phenotype were physiologically and symptomatically similar to T2HIGH exacerbations. T2LOW asthma was an unstable phenotype, suggesting that exacerbation phenotyping should occur at the time of exacerbation. The clinically significant exacerbations in participants without evidence of T2 biology at the time of exacerbation highlight the unmet and pressing need to further understand the mechanisms at play in non-T2 asthma. Clinical trial registered with www.clinicaltrials.gov (NCT02717689).


Subject(s)
Anti-Asthmatic Agents , Asthma , Adrenal Cortex Hormones/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Biomarkers , Disease Progression , Female , Humans , Male , Phenotype , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...