Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(31): e2401741, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889243

ABSTRACT

Properties of high-entropy alloys are currently in the spotlight due to their promising applications. One of the least investigated aspects is the affinity of these alloys to hydrogen, its diffusion, and reactions. In this study, high pressure is applied at ambient temperature and stress-induced diffusion of hydrogen is investigated into the structure of high-entropy alloys (HEA) including the famous Cantor alloy as well as less known, but nevertheless important platinum group (PGM) alloys. By applying X-ray diffraction to samples loaded into diamond anvil cells, a comparative investigation of transition element incorporating HEA alloys in Ne and H2 pressure-transmitting media is performed at ambient temperature. Even under stresses far exceeding conventional industrial processes, both Cantor and PGM alloys show exceptional resistance to hydride formation, on par with widely used industrial grade Cu-Be alloys. The observations inspire optimism for practical HEA applications in hydrogen-relevant industry and technology (e.g., coatings, etc), particularly those related to transport and storage.

2.
Materials (Basel) ; 14(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33917269

ABSTRACT

We present a first-principles assessment of the finite-temperature thermodynamic properties of the intermetallic Al3Sc phase including the complete spectrum of excitations and compare the theoretical findings with our dilatometric and calorimetric measurements. While significant electronic contributions to the heat capacity and thermal expansion are observed near the melting temperature, anharmonic contributions, and electron-phonon coupling effects are found to be relatively small. On the one hand, these accurate methods are used to demonstrate shortcomings of empirical predictions of phase stabilities such as the Neumann-Kopp rule. On the other hand, their combination with elasticity theory was found to provide an upper limit for the size of Al3Sc nanoprecipitates needed to maintain coherency with the host matrix. The chemo-mechanical coupling being responsible for the coherency loss of strengthening precipitates is revealed by a combination of state-of-the-art simulations and dedicated experiments. These findings can be exploited to fine-tune the microstructure of Al-Sc-based alloys to approach optimum mechanical properties.

3.
Sci Rep ; 7(1): 2209, 2017 05 19.
Article in English | MEDLINE | ID: mdl-28526830

ABSTRACT

Multi-principle element alloys have enormous potential, but their exploration suffers from the tremendously large range of configurations. In the last decade such alloys have been designed with a focus on random solid solutions. Here we apply an experimentally verified, combined thermodynamic and first-principles design strategy to reverse the traditional approach and to generate a new type of hcp Al-Hf-Sc-Ti-Zr high entropy alloy with a hitherto unique structure. A phase diagram analysis narrows down the large compositional space to a well-defined set of candidates. First-principles calculations demonstrate the energetic preference of an ordered superstructure over the competing disordered solid solutions. The chief ingredient is the Al concentration, which can be tuned to achieve a D019 ordering on the hexagonal lattice. The computationally designed D019 superstructure is experimentally confirmed by transmission electron microscopy and X-ray studies. Our scheme enables the exploration of a new class of high entropy alloys.

4.
Phys Rev Lett ; 107(23): 235503, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22182099

ABSTRACT

Atomic diffusion in deformed Pd(40)Ni(40)P(20) bulk metallic glass containing a single family of deformation-induced shear bands was measured by the radiotracer technique. The significant, by orders of magnitude, enhancement of the diffusion rate with respect to that in the untransformed matrix suggests that the shear bands represent short-circuit diffusion paths. Correlations between diffusivity, viscosity, and the excess free volume distribution inside of shear bands are discussed.

5.
Phys Rev Lett ; 102(16): 165501, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19518724

ABSTRACT

Radiotracer experiments on diffusion of 63Ni and 86Rb in severely deformed commercially pure copper (8 passes of equal channel angular pressing) reveal unambiguously the existence of ultrafast transport paths. A fraction of these paths remains in the material even after complete recrystallization. Scanning electron microscopy and focused ion beam techniques are applied. Deep grooves are found which are related to original high-energy interfaces. In-depth sectioning near corresponding triple junctions reveals clearly multiple microvoids or microcracks caused by the severe deformation. Long-range tracer penetration over tens of micrometers proves that these submicrometer-large defects are connected by highly diffusive paths and that they appear with significant frequency.

SELECTION OF CITATIONS
SEARCH DETAIL