Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 820996, 2022.
Article in English | MEDLINE | ID: mdl-35356115

ABSTRACT

Pearl millet [Pennisetum glaucum (L) R. Br.] is an important cereal crop of the semiarid tropics, which can withstand prolonged drought and heat stress. Considering an active involvement of the aquaporin (AQP) genes in water transport and desiccation tolerance besides several basic functions, their potential role in abiotic stress tolerance was systematically characterized and functionally validated. A total of 34 AQP genes from P. glaucum were identified and categorized into four subfamilies, viz., plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin-26-like intrinsic proteins (NIPs), and small basic intrinsic proteins (SIPs). Sequence analysis revealed that PgAQPs have conserved characters of AQP genes with a closer relationship to sorghum. The PgAQPs were expressed differentially under high vapor pressure deficit (VPD) and progressive drought stresses where the PgPIP2;6 gene showed significant expression under high VPD and drought stress. Transgenic tobacco plants were developed by heterologous expression of the PgPIP2;6 gene and functionally characterized under different abiotic stresses to further unravel their role. Transgenic tobacco plants in the T2 generations displayed restricted transpiration and low root exudation rates in low- and high-VPD conditions. Under progressive drought stress, wild-type (WT) plants showed a quick or faster decline of soil moisture than transgenics. While under heat stress, PgPIP2;6 transgenics showed better adaptation to heat (40°C) with high canopy temperature depression (CTD) and low transpiration; under low-temperature stress, they displayed lower transpiration than their non-transgenic counterparts. Cumulatively, lower transpiration rate (Tr), low root exudation rate, declined transpiration, elevated CTD, and lower transpiration indicate that PgPIP2;6 plays a role under abiotic stress tolerance. Since the PgPIP2;6 transgenic plants exhibited better adaptation against major abiotic stresses such as drought, high VPD, heat, and cold stresses by virtue of enhanced transpiration efficiency, it has the potential to engineer abiotic stress tolerance for sustained growth and productivity of crops.

2.
Physiol Plant ; 173(4): 1616-1628, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34455597

ABSTRACT

Late embryogenesis abundant (LEA) genes display distinct functions in response to abiotic stresses in plants. In pearl millet (Pennisetum glaucum L.), a total of 21 PgLEA genes were identified and classified into six groups including LEA1, LEA2, LEA3, LEA5, LEA7, and dehydrins (DHN). Open reading frames (ORFs) of PgLEAs range from 291 bp (PgLEA1-1) to 945 bp (PgLEA2-11) and distributed randomly among the seven chromosomes. Phylogenetic analysis revealed that all PgLEA proteins are closely related to sorghum LEA proteins. The PgLEAs were found to be expressed differentially under high progressive vapor pressure deficit (VPD), PgLEA7 was significantly expressed under high VPD and was selected for functional validation. In silico analysis of the PgLEA promoter regions revealed abiotic stress-specific cis-acting elements such as ABRE, CCAAT, MYBS, and LTRE. Based on the type of motifs, PgLEAPC promoter (758 bp), its deletion 1 (PgLpd1, 349 bp) and deletion 2 (PgLpd2, 125 bp) were cloned into the plant expression vector pMDC164 having the promoter-less uidA gene. All the three plant expression vectors were introduced into tobacco through Agrobacterium tumefaciens-mediated transformation to obtain T1 and T2 generations of transgenic plants. Based on expression of the uidA gene, tissue-specific expression was observed in mature stems, roots and seedlings of PgLEAPC and PgLpd1 carrying transgenics only. While the transgenic PgLEAPC plants displayed significantly higher uidA expression in the stem and root tissues under salt, drought, heat, and cold stresses, very low or no expression was observed in PgLpd1 and PgLpd2 transgenics under the tested stress conditions. The results of this study indicate that the complete promoter of PgLEAPC plays a role in developing abiotic stress tolerance in plants.


Subject(s)
Pennisetum , Droughts , Embryonic Development , Gene Expression Regulation, Plant , Pennisetum/genetics , Pennisetum/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic/genetics , Stress, Physiological/genetics
3.
Front Plant Sci ; 11: 546213, 2020.
Article in English | MEDLINE | ID: mdl-33343588

ABSTRACT

Lysine (Lys) is indispensable nutritionally, and its levels in plants are modulated by both transcriptional and post-transcriptional control during plant ontogeny. Animal glutamate receptor homologs have been detected in plants, which may participate in several plant processes through the Lys catabolic products. Interestingly, a connection between Lys and serotonin metabolism has been established recently in rice. 2-Aminoadipate, a catabolic product of Lys appears to play a critical role between serotonin accumulation and the color of rice endosperm/grain. It has also been shown that expression of some lysine-methylated proteins and genes encoding lysine-methyltransferases (KMTs) are regulated by cadmium even as it is known that Lys biosynthesis and its degradation are modulated by novel mechanisms. Three complex pathways co-exist in plants for serine (Ser) biosynthesis, and the relative preponderance of each pathway in relation to plant development or abiotic stress tolerance are being unfolded slowly. But the phosphorylated pathway of L-Ser biosynthesis (PPSB) appears to play critical roles and is essential in plant metabolism and development. Ser, which participates indirectly in purine and pyrimidine biosynthesis and plays a pivotal role in plant metabolism and signaling. Also, L-Ser has been implicated in plant responses to both biotic and abiotic stresses. A large body of information implicates Lys-rich and serine/arginine-rich (SR) proteins in a very wide array of abiotic stresses. Interestingly, a link exists between Lys-rich K-segment and stress tolerance levels. It is of interest to note that abiotic stresses largely influence the expression patterns of SR proteins and also the alternative splicing (AS) patterns. We have checked if any lncRNAs form a cohort of differentially expressed genes from the publicly available PPSB, sequence read archives of NCBI GenBank. Finally, we discuss the link between Lys and Ser synthesis, catabolism, Lys-proteins, and SR proteins during plant development and their myriad roles in response to abiotic stresses.

4.
Mol Biol Rep ; 46(6): 6039-6052, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31468258

ABSTRACT

Pearl millet is a C4 cereal crop that grows in arid and semi-arid climatic conditions with the remarkable abiotic stress tolerance. It contributed to the understanding of stress tolerance not only at the physiological level but also at the genetic level. In the present study, we functionally cloned and characterized three abiotic stress-inducible promoters namely cytoplasmic Apx1 (Ascorbate peroxidase), Dhn (Dehydrin), and Hsc70 (Heat shock cognate) from pearl millet. Sequence analysis revealed that all three promoters have several cis-acting elements specific for temporal and spatial expression. PgApx pro, PgDhn pro and PgHsc70 pro were fused with uidA gene in Gateway-based plant transformation pMDC164 vector and transferred into tobacco through leaf-disc method. While PgApx pro and PgDhn pro were active in seedling stages, PgHsc70 pro was active in stem and root tissues of the T2 transgenic tobacco plants under control conditions. Higher activity was observed under high temperature and drought, and less in salt and cold stress conditions. Further, all three promoters displayed higher GUS gene expression in the stem, moderate expression in roots, and less expression in leaves under similar conditions. While RT-qPCR data showed that PgApx pro and PgDhn pro were expressed highly in high temperature, salt and drought, PgHsc70 pro was fairly expressed during high temperature stress only. Histochemical and RT-qPCR assays showed that all three promoters are inducible under abiotic stress conditions. Thus, these promoters appear to be immediate candidates for developing abiotic stress tolerant crops as these promoter-driven transgenics confer high degree of tolerance in comparison with the wild-type (WT) plants.


Subject(s)
Pennisetum/genetics , Promoter Regions, Genetic/genetics , Stress, Physiological/genetics , Ascorbate Peroxidases/genetics , Droughts , Gene Expression Regulation, Plant/genetics , Heat-Shock Proteins/genetics , Hot Temperature , Pennisetum/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Salinity , Salt Tolerance/genetics , Seedlings/metabolism , Sodium Chloride/metabolism , Stress, Physiological/physiology , Nicotiana/genetics
5.
PLoS One ; 13(10): e0205668, 2018.
Article in English | MEDLINE | ID: mdl-30321245

ABSTRACT

Finger millet (Eleusine coracana L.) is an annual herbaceous self-pollinating C4 cereal crop of the arid and semi-arid regions of the world. Finger millet is a food security crop proven to have resilience to changing climate and scores very high in nutrition. In the current study, we have assessed sixteen candidate reference genes for their appropriateness for the normalization studies in finger millet subjected to experimental regimes and treatments. Ten candidate reference genes (GAPDH, ß-TUB, CYP, EIF4α, TIP41, UBC, G6PD, S24, MACP and MDH) were cloned and six (ACT, ELF1α, PP2A, PT, S21 and TFIID) were mined from the NCBI database as well as from the literature. Expression stability ranking of the finger millet reference genes was validated using four different statistical tools i.e., geNorm, NormFinder, BestKeeper, ΔCt and RefFinder. From the study, we endorse MACP, CYP, EIF4α to be most stable candidate reference genes in all 'tissues', whereas PT, TFIID, MACP ranked high across genotypes, ß-TUB, CYP, ELF1α were found to be best under abiotic stresses and 'all samples set'. The study recommends using minimum of two reference genes for RT-qPCR data normalizations in finger millet. All in all, CYP, ß-TUB, and EF1α, in combination were found to be best for robust normalizations under most experimental conditions. The best and the least stable genes were validated for confirmation by assessing their appropriateness for normalization studies using EcNAC1 gene. The report provides the first comprehensive list of suitable stable candidate reference genes for nutritional rich cereal finger millet that will be advantageous to gene expression studies in this crop.


Subject(s)
Eleusine/genetics , Genes, Plant/genetics , Real-Time Polymerase Chain Reaction/standards , Cloning, Molecular , RNA, Plant/genetics , Real-Time Polymerase Chain Reaction/methods , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...