Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Mol Biol ; 114(2): 19, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363401

ABSTRACT

Chickpea (Cicer arietinum) is a cool season grain legume experiencing severe yield loss during heat stress due to the intensifying climate changes and its associated gradual increase of mean temperature. Hence, understanding the genetic architecture regulating heat stress tolerance has emerged as an important trait to be addressed for enhancing yield and productivity of chickpea under heat stress. The present study is intended to identify the major genomic region(s) governing heat stress tolerance in chickpea. For this, an integrated genomics-assisted breeding strategy involving NGS-based high-resolution QTL-seq assay, QTL region-specific association analysis and molecular haplotyping was deployed in a population of 206 mapping individuals and a diversity panel of 217 germplasm accessions of chickpea. This combinatorial strategy delineated a major 156.8 kb QTL genomic region, which was subsequently narrowed-down to a functional candidate gene CaHSFA5 and its natural alleles associated strongly with heat stress tolerance in chickpea. Superior natural alleles and haplotypes delineated from the CaHSFA5 gene have functional significance in regulating heat stress tolerance in chickpea. Histochemical staining, interaction studies along with differential expression profiling of CaHSFA5 and ROS scavenging genes suggest a cross talk between CaHSFA5 with ROS homeostasis pertaining to heat stress tolerance in chickpea. Heterologous gene expression followed by heat stress screening further validated the functional significance of CaHSFA5 for heat stress tolerance. The salient outcomes obtained here can have potential to accelerate multiple translational genomic analysis including marker-assisted breeding and gene editing in order to develop high-yielding heat stress tolerant chickpea varieties.


Subject(s)
Cicer , Thermotolerance , Humans , Chromosome Mapping , Quantitative Trait Loci/genetics , Cicer/genetics , Genome, Plant , Reactive Oxygen Species , Polymorphism, Single Nucleotide , Plant Breeding , Thermotolerance/genetics
2.
J Exp Bot ; 73(22): 7255-7272, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36006832

ABSTRACT

'QTL-hotspot' is a genomic region on linkage group 04 (CaLG04) in chickpea (Cicer arietinum) that harbours major-effect quantitative trait loci (QTLs) for multiple drought-adaptive traits, and it therefore represents a promising target for improving drought adaptation. To investigate the mechanisms underpinning the positive effects of 'QTL-hotspot' on seed yield under drought, we introgressed this region from the ICC 4958 genotype into five elite chickpea cultivars. The resulting introgression lines (ILs) and their parents were evaluated in multi-location field trials and semi-controlled conditions. The results showed that the 'QTL-hotspot' region improved seed yield under rainfed conditions by increasing seed weight, reducing the time to flowering, regulating traits related to canopy growth and early vigour, and enhancing transpiration efficiency. Whole-genome sequencing data analysis of the ILs and parents revealed four genes underlying the 'QTL-hotspot' region associated with drought adaptation. We validated diagnostic KASP markers closely linked to these genes using the ILs and their parents for future deployment in chickpea breeding programs. The CaTIFY4b-H2 haplotype of a potential candidate gene CaTIFY4b was identified as the superior haplotype for 100-seed weight. The candidate genes and superior haplotypes identified in this study have the potential to serve as direct targets for genetic manipulation and selection for chickpea improvement.


Subject(s)
Cicer , Cicer/genetics , Genomics
3.
Front Plant Sci ; 13: 861191, 2022.
Article in English | MEDLINE | ID: mdl-35665148

ABSTRACT

Pea (Pisum sativum L.) is one of the most important and productive cool season pulse crops grown throughout the world. Biotic stresses are the crucial constraints in harnessing the potential productivity of pea and warrant dedicated research and developmental efforts to utilize omics resources and advanced breeding techniques to assist rapid and timely development of high-yielding multiple stress-tolerant-resistant varieties. Recently, the pea researcher's community has made notable achievements in conventional and molecular breeding to accelerate its genetic gain. Several quantitative trait loci (QTLs) or markers associated with genes controlling resistance for fusarium wilt, fusarium root rot, powdery mildew, ascochyta blight, rust, common root rot, broomrape, pea enation, and pea seed borne mosaic virus are available for the marker-assisted breeding. The advanced genomic tools such as the availability of comprehensive genetic maps and linked reliable DNA markers hold great promise toward the introgression of resistance genes from different sources to speed up the genetic gain in pea. This review provides a brief account of the achievements made in the recent past regarding genetic and genomic resources' development, inheritance of genes controlling various biotic stress responses and genes controlling pathogenesis in disease causing organisms, genes/QTLs mapping, and transcriptomic and proteomic advances. Moreover, the emerging new breeding approaches such as transgenics, genome editing, genomic selection, epigenetic breeding, and speed breeding hold great promise to transform pea breeding. Overall, the judicious amalgamation of conventional and modern omics-enabled breeding strategies will augment the genetic gain and could hasten the development of biotic stress-resistant cultivars to sustain pea production under changing climate. The present review encompasses at one platform the research accomplishment made so far in pea improvement with respect to major biotic stresses and the way forward to enhance pea productivity through advanced genomic tools and technologies.

4.
Int J Biometeorol ; 66(6): 1267-1281, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35486200

ABSTRACT

Field pea is highly sensitive to climatic vagaries, particularly high-temperature stress. The crop often experiences terminal heat stress in tropical climates indicating the need for the development of heat-tolerant cultivars. Characterization and identification of stress-adaptive plant traits are pre-requisites for breeding stress-tolerant/adaptive cultivar(s). In the study, a panel of 150 diverse field pea genotypes was tested under three different temperature environments (i.e., normal sowing time or non-heat stress environment (NSTE), 15 days after normal sowing time or heat stress environment-I (LSHTE-I), and 30 days after normal sowing time or heat stress environment-II (LSHTE-II)) to verify the effect of high-temperature environment, genotype, and genotype × environment interaction on different plant traits and to elucidate their significance in heat stress adaptation/tolerance. The delayed sowing had exposed field pea crops to high temperatures during flowering stage by + 3.5 °C and + 8.1 °C in the LSHTE-I and LSHTE-II, respectively. Likewise, the maximum ambient temperature during the grain-filling period was + 3.3 °C and + 6.1 °C higher in the LSHTE-I and LSHTE-II over the NSTE. The grain yield loss with heat stress was 25.8 ± 2.2% in LSHTE-I, and 59.3 ± 1.5% in LSHTE-II compared to the NSTE. Exposure of crops to a high-temperature environment during the flowering stage had a higher impact on grain yield than the heat stress at the grain filling period. Results suggested that the reduced sink capacity (pod set (pod plant-1), seed set (seed pod-1)) was the primary cause of yield loss under the heat stress environments, while, under the NSTE, yield potential was mostly attributed to the source capacity (plant biomass). The high-temperature stress resulted in forced maturity as revealed by shrinkage in crop period (5-11%) and reproductive period (15-36%), prominently in long-duration genotypes. The failure of pod set in the upper nodes and higher ovule abortion (7-16%) was noticed under the high-temperature environments, particularly in the LSHTE-II. Multivariate analysis results revealed seed set, pods plant-1, last pod bearing node, and plant biomass as a critical yield determinant under the heat stress. The GGE biplot suggested that the genotypes G-112, G-114, and G-33 had higher potential to sustain yield coupled with higher stability across the environments and, thus, could serve as a source for breeding heat-tolerant high yielding cultivars.


Subject(s)
Pisum sativum , Thermotolerance , Edible Grain , Heat-Shock Response/genetics , Pisum sativum/genetics , Phenotype , Seeds/genetics
5.
Front Plant Sci ; 12: 635868, 2021.
Article in English | MEDLINE | ID: mdl-33854520

ABSTRACT

The apparent climatic extremes affect the growth and developmental process of cool-season grain legumes, especially the high-temperature stress. The present study aimed to investigate the impacts of high-temperature stress on crop phenology, seed set, and seed quality parameters, which are still uncertain in tropical environments. Therefore, a panel of 150 field pea genotypes, grouped as early (n = 88) and late (n = 62) maturing, were exposed to high-temperature environments following staggered sowing [normal sowing time or non-heat stress environment (NHSE); moderately late sowing (15 days after normal sowing) or heat stress environment-I (HSE-I); and very-late sowing (30 days after normal sowing) or HSE-II]. The average maximum temperature during flowering was about 22.5 ± 0.17°C for NHSE and increased to 25.9 ± 0.11°C and 30.6 ± 0.19°C in HSE-I and HSE-II, respectively. The average maximum temperature during the reproductive period (RP) (flowering to maturity) was in the order HSE-II (33.3 ± 0.03°C) > HSE-I (30.5 ± 0.10°C) > NHSE (27.3 ± 0.10°C). The high-temperature stress reduced the seed yield (24-60%) and seed germination (4-8%) with a prominent effect on long-duration genotypes. The maximum reduction in seed germination (>15%) was observed in HSE-II for genotypes with >115 days maturity duration, which was primarily attributed to higher ambient maximum temperature during the RP. Under HSEs, the reduction in the RP in early- and late-maturing genotypes was 13-23 and 18-33%, suggesting forced maturity for long-duration genotypes under late-sown conditions. The cumulative growing degree days at different crop stages had significant associations (p < 0.001) with seed germination in both early- and late-maturing genotypes; and the results further demonstrate that an extended vegetative period could enhance the 100-seed weight and seed germination. Reduction in seed set (7-14%) and 100-seed weight (6-16%) was observed under HSEs, particularly in HSE-II. The positive associations of 100-seed weight were observed with seed germination and germination rate in the late-maturing genotypes, whereas in early-maturing genotypes, a negative association was observed for 100-seed weight and germination rate. The GGE biplot analysis identified IPFD 11-5, Pant P-72, P-1544-1, and HUDP 11 as superior genotypes, as they possess an ability to produce more viable seeds under heat stress conditions. Such genotypes will be useful in developing field pea varieties for quality seed production under the high-temperature environments.

6.
Plant Genome ; 14(1): e20076, 2021 03.
Article in English | MEDLINE | ID: mdl-33480153

ABSTRACT

With an aim of enhancing drought tolerance using a marker-assisted backcrossing (MABC) approach, we introgressed the "QTL-hotspot" region from ICC 4958 accession that harbors quantitative trait loci (QTLs) for several drought-tolerance related traits into three elite Indian chickpea (Cicer arietinum L.) cultivars: Pusa 372, Pusa 362, and DCP 92-3. Of eight simple sequence repeat (SSR) markers in the QTL-hotspot region, two to three polymorphic markers were used for foreground selection with respective cross-combinations. A total of 47, 53, and 46 SSRs were used for background selection in case of introgression lines (ILs) developed in genetic backgrounds of Pusa 372, Pusa 362, and DCP 92-3, respectively. In total, 61 ILs (20 BC3 F3 in Pusa 372; 20 BC2 F3 in Pusa 362, and 21 BC3 F3 in DCP 92-3), with >90% recurrent parent genome recovery were developed. Six improved lines in different genetic backgrounds (e.g. BGM 10216 in Pusa 372; BG 3097 and BG 4005 in Pusa 362; IPC(L4-14), IPC(L4-16), and IPC(L19-1) in DCP 92-3) showed better performance than their respective recurrent parents. BGM 10216, with 16% yield gain over Pusa 372, has been released as Pusa Chickpea 10216 by the Central Sub-Committees on Crop Standards, Notification and Release of Varieties of Agricultural Crops, Ministry of Agriculture and Farmers Welfare, Government of India, for commercial cultivation in India. In summary, this study reports introgression of the QTL-hotspot for enhancing yield under rainfed conditions, development of several introgression lines, and release of Pusa Chickpea 10216 developed through molecular breeding in India.


Subject(s)
Cicer , Quantitative Trait Loci , Cicer/genetics , Droughts , Edible Grain , India
7.
PLoS One ; 15(10): e0240589, 2020.
Article in English | MEDLINE | ID: mdl-33075085

ABSTRACT

Chickpea (Cicer arietinum L.) is the second largest pulse crop grown worldwide and ascochyta blight caused by Ascochyta rabiei (Pass.) Labr. is the most devastating disease of the crop in all chickpea growing areas across the continents. The pathogen A. rabiei is highly variable. The resistant sources available are not sufficient and new sources needs to be identified from time to time as resistance breakdown in existing chickpea varieties is very frequent due to fast evolution of new pathotypes of the pathogen. Therefore, this work was undertaken to evaluate the existing chickpea germplasm diversity conserved in Indian National Genebank against the disease under artificial epiphytotic conditions. An artificial standard inoculation procedure was followed for uniform spread of the pathogen. During the last five winter seasons from 2014-15 to 2018-19, a total of 1,970 accessions have been screened against the disease and promising accessions were identified and validated. Screening has resulted in identification of some promising chickpea accessions such as IC275447, IC117744, EC267301, IC248147 and EC220109 which have shown the disease resistance (disease severity score ≤3) in multiple seasons and locations. Promising accessions can serve as the potential donors in chickpea improvement programs. The frequency of resistant and moderately resistant type accessions was comparatively higher in accessions originated from Southwest Asian countries particularly Iran and Syria than the accessions originated from Indian sub-continent. Further large scale screening of chickpea germplasm originated from Southwest Asia may result in identifying new resistant sources for the disease.


Subject(s)
Cicer/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Ascomycota/genetics , Ascomycota/pathogenicity , Chromosome Mapping , Cicer/microbiology , Crosses, Genetic , Iran , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Syria
8.
Theor Appl Genet ; 133(5): 1703-1720, 2020 May.
Article in English | MEDLINE | ID: mdl-32253478

ABSTRACT

KEY MESSAGE: Integration of genomic technologies with breeding efforts have been used in recent years for chickpea improvement. Modern breeding along with low cost genotyping platforms have potential to further accelerate chickpea improvement efforts. The implementation of novel breeding technologies is expected to contribute substantial improvements in crop productivity. While conventional breeding methods have led to development of more than 200 improved chickpea varieties in the past, still there is ample scope to increase productivity. It is predicted that integration of modern genomic resources with conventional breeding efforts will help in the delivery of climate-resilient chickpea varieties in comparatively less time. Recent advances in genomics tools and technologies have facilitated the generation of large-scale sequencing and genotyping data sets in chickpea. Combined analysis of high-resolution phenotypic and genetic data is paving the way for identifying genes and biological pathways associated with breeding-related traits. Genomics technologies have been used to develop diagnostic markers for use in marker-assisted backcrossing programmes, which have yielded several molecular breeding products in chickpea. We anticipate that a sequence-based holistic breeding approach, including the integration of functional omics, parental selection, forward breeding and genome-wide selection, will bring a paradigm shift in development of superior chickpea varieties. There is a need to integrate the knowledge generated by modern genomics technologies with molecular breeding efforts to bridge the genome-to-phenome gap. Here, we review recent advances that have led to new possibilities for developing and screening breeding populations, and provide strategies for enhancing the selection efficiency and accelerating the rate of genetic gain in chickpea.


Subject(s)
Cicer/growth & development , Cicer/genetics , Genome, Plant , Genomics/methods , Plant Breeding/standards , Plants, Genetically Modified/genetics , Quantitative Trait Loci , Genetics, Population , Phenotype , Plants, Genetically Modified/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...