Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 12(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36678474

ABSTRACT

Invasive fungal infections caused by Candida species remain a significant public health problem worldwide. The increasing prevalence of drug-resistant infections and a limited arsenal of antifungal drugs underscore the need for novel interventions. Here, we screened several classes of pharmacologically active compounds against mammalian diseases for antifungal activity. We found that the synthetic triazine-based compound melanogenin (Mel) 56 is fungicidal in Candida albicans laboratory and clinical strains with minimal inhibitory concentrations of 8−16 µg/mL. Furthermore, Mel56 has general antifungal activity in several non-albicans Candida species and the non-pathogenic yeast Saccharomyces cerevisiae. Surprisingly, Mel56 inhibited the yeast-to-hyphae transition at sublethal concentrations, revealing a new role for triazine-based compounds in fungi. In human cancer cell lines, Mel56 targets the inner mitochondrial integral membrane prohibitin proteins, PHB1 and PHB2. However, Mel56 treatment did not impact C. albicans mitochondrial activity, and antifungal activity was similar in prohibitin single, double, and triple homozygous mutant strains compared to the wild-type parental strain. These results suggests that Mel56 has a novel mechanism-of-action in C. albicans. Therefore, Mel56 is a promising antifungal candidate warranting further analyses.

2.
Diabetes ; 70(10): 2204-2212, 2021 10.
Article in English | MEDLINE | ID: mdl-34257070

ABSTRACT

Prohibitin-1 (PHB) is a multifunctional protein previously reported to be important for adipocyte function. PHB is expressed on the surface of adipose cells, where it interacts with a long-chain fatty acid (LCFA) transporter. Here, we show that mice lacking PHB in adipocytes (PHB adipocyte [Ad]-knockout [KO]) have a defect in fat tissue accumulation despite having larger lipid droplets in adipocytes due to reduced lipolysis. Although PHB Ad-KO mice do not display glucose intolerance, they are insulin resistant. We show that PHB Ad-KO mice are lipid intolerant due to a decreased capacity of adipocytes for LCFA uptake. Instead, PHB Ad-KO mice have increased expression of GLUT1 in various tissues and use glucose as a preferred energy source. We demonstrate that PHB Ad-KO mice have defective brown adipose tissue, are intolerant to cold, and display reduced basal energy expenditure. Systemic repercussions of PHB inactivation in adipocytes were observed in both males and females. Consistent with lower cellular mitochondrial content and reduced uncoupling protein 1 protein expression, brown adipocytes lacking PHB display decreased proton leak and switch from aerobic metabolism to glycolysis. Treatment of differentiating brown adipocytes with small molecules targeting PHB suppressed mitochondrial respiration and uncoupling. Our results demonstrate that PHB in adipocytes is essential for normal fatty acid uptake, oxidative metabolism, and adaptive thermogenesis. We conclude that PHB inhibition could be investigated as an approach to altering energy substrate utilization.


Subject(s)
Adipocytes/metabolism , Lipid Metabolism/genetics , Prohibitins/genetics , Thermogenesis/genetics , Adipose Tissue, Brown/metabolism , Animals , Cells, Cultured , Energy Metabolism/genetics , Gene Silencing , Glucose/metabolism , Lipolysis/genetics , Mice , Mice, Knockout , Mitochondria/physiology , Organ Specificity/genetics , Prohibitins/metabolism
3.
Bioorg Med Chem Lett ; 30(22): 127600, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33035678

ABSTRACT

The stomatin/prohibitin/flotillin/HflK/HflC (SPFH) domain is present in an evolutionarily conserved family of proteins that regulate a myriad of signaling pathways in archaea, bacteria and eukaryotes. The most studied SPFH proteins, prohibitins, have already been targeted by different families of small molecules to induce anticancer, cardioprotective, anti-inflammatory, antiviral, and antiosteoporotic activities. Ligands of other SPFH proteins have also been identified and shown to act as anesthetics, anti-allodynia, anticancer, and anti-inflammatory agents. These findings indicate that modulators of human or bacterial SPFH proteins can be developed to treat a wide variety of human disorders.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Disease , Humans , Ligands , Molecular Structure , Small Molecule Libraries/chemistry
4.
Cell Mol Life Sci ; 77(18): 3525-3546, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32062751

ABSTRACT

Over the last three decades, the scaffold proteins prohibitins-1 and -2 (PHB1/2) have emerged as key signaling proteins regulating a myriad of signaling pathways in health and diseases. Small molecules targeting PHBs display promising effects against cancers, osteoporosis, inflammatory, cardiac and neurodegenerative diseases. This review provides an updated overview of the various classes of PHB ligands, with an emphasis on their mechanism of action and therapeutic potential. We also describe how these ligands have been used to explore PHB signaling in different physiological and pathological settings.


Subject(s)
Heart Diseases/pathology , Ligands , Neoplasms/therapy , Nervous System Diseases/therapy , Osteoporosis/therapy , Repressor Proteins/metabolism , Gene Expression , Heart Diseases/metabolism , Heart Diseases/therapy , Humans , Neoplasms/metabolism , Neoplasms/pathology , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Osteoporosis/metabolism , Osteoporosis/pathology , Prohibitins , Protein Processing, Post-Translational , Repressor Proteins/chemistry , Repressor Proteins/genetics , Signal Transduction
5.
Eur J Med Chem ; 155: 880-888, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29960207

ABSTRACT

Prohibitins 1 and 2 (PHB1/2) are scaffold proteins that are involved in both melanogenesis and oncogenic pathways. We hypothesized that a PHB1 ligand, melanogenin, may display anti-cancer effects in addition to its known melanogenic activity in melanocytes. Here, we disclose a convenient synthesis of melanogenin, and its analogs. We found that, among 57 new melanogenin analogs, two (Mel9 and Mel41) significantly promoted both melanogenesis in melanocytes by activating one of the PHB2-interacting proteins, microtubule-associated protein light chain 3 (LC3), and upregulating the expression of microphthalmia associated transcription factor (MITF). These analogs also activate ERK. Besides, in addition to their promelanogenic activities, we uncovered that melanogenin and its active analogs induce apoptosis in several cancer cell lines, including melanoma cells, and that this effect is caused by an inhibition of AKT survival pathway. Our findings present a new putative function for PHBs as regulators of LC3/ERK/MITF melanogenic signaling, and suggest that Mel9 and Mel41 may provide the basis for the development of new drugs candidates to treat melanoma and other types of cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Melanoma/drug therapy , Repressor Proteins/pharmacology , Small Molecule Libraries/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Melanocytes/drug effects , Melanoma/pathology , Molecular Structure , Prohibitins , Repressor Proteins/chemistry , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
6.
Front Chem ; 2: 20, 2014.
Article in English | MEDLINE | ID: mdl-24822174

ABSTRACT

Natural products have historically been a mainstay source of anticancer drugs, but in the 90's they fell out of favor in pharmaceutical companies with the emergence of targeted therapies, which rely on antibodies or small synthetic molecules identified by high throughput screening. Although targeted therapies greatly improved the treatment of a few cancers, the benefit has remained disappointing for many solid tumors, which revitalized the interest in natural products. With the approval of rapamycin in 2007, 12 novel natural product derivatives have been brought to market. The present review describes the discovery and development of these new anticancer drugs and highlights the peculiarities of natural product and new trends in this exciting field of drug discovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...