Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Microb Genom ; 9(7)2023 07.
Article in English | MEDLINE | ID: mdl-37471138

ABSTRACT

Extraintestinal pathogenic Escherichia coli (ExPEC) are the most frequent cause of urinary tract infections (UTIs) globally. Most studies of clinical E. coli isolates are selected based on their antimicrobial resistance (AMR) phenotypes; however, this selection bias may not provide an accurate portrayal of which sequence types (STs) cause the most disease. Here, whole genome sequencing (WGS) was performed on 320 E. coli isolates from urine samples sourced from a regional hospital in Australia in 2006. Most isolates (91%) were sourced from patients with UTIs and were not selected based on any AMR phenotypes. No significant differences were observed in AMR and virulence genes profiles across age sex, and uro-clinical syndromes. While 88 STs were identified, ST73, ST95, ST127 and ST131 dominated. F virulence plasmids carrying senB-cjrABC (126/231; 55%) virulence genes were a feature of this collection. These senB-cjrABC+ plasmids were split into two categories: pUTI89-like (F29:A-:B10 and/or >95 % identity to pUTI89) (n=73) and non-pUTI89-like (n=53). Compared to all other plasmid replicons, isolates with pUTI89-like plasmids carried fewer antibiotic resistance genes (ARGs), whilst isolates with senB-cjrABC+/non-pUTI89 plasmids had a significantly higher load of ARGs and class 1 integrons. F plasmids were not detected in 89 genomes, predominantly ST73. Our phylogenomic analyses identified closely related isolates from the same patient associated with different pathologies and evidence of strain-sharing events involving isolates sourced from companion and wild animals.


Subject(s)
Escherichia coli Infections , Extraintestinal Pathogenic Escherichia coli , Urinary Tract Infections , Animals , Escherichia coli , Virulence/genetics , Anti-Bacterial Agents/pharmacology , F Factor , Genotype , Drug Resistance, Bacterial/genetics , Australia , Genomics
3.
mSystems ; 7(1): e0121221, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35076267

ABSTRACT

Escherichia coli sequence type 95 (ST95) is an extraintestinal pathogenic E. coli (ExPEC) renowned for its ability to cause significant morbidity and mortality in humans and poultry. A core genome analysis of 668 ST95 isolates generated 10 clades (A to J), 5 of which are reported here for the first time. F plasmid replicon sequence typing showed that almost a third (178/668 [27%]) of the collection carry pUTI89 (F29:B10) and were restricted to clade A and a sublineage of clade B. In contrast, almost half (328/668 [49%]) of the collection across multiple clades harbor ColV plasmids (multiple F types). Strikingly, ST95 lineages with pUTI89 were almost exclusively from humans, while ColV+ ST95 lineages were sourced from poultry and humans. Clade I was notable because it comprises temporally and geographically matched ColV+ isolates sourced from human and retail poultry meat, suggesting interspecies transmission via food. Clade F contained ST95 isolates of bovine origin, none of which carried ColV or pUTI89 plasmids. Remarkably, an analysis of a cohort of 34,176 E. coli isolates comprising 2,570 sequence types mirrored what was observed in ST95: (i) pUTI89 was overwhelmingly linked to E. coli sourced from humans but almost entirely absent from 13,027 E. coli isolates recovered from poultry, pigs, and cattle, and (ii) E. coli isolates harboring ColV plasmids were from multiple sources, including humans, poultry, and swine. Overall, our data suggest that F plasmids influence E. coli host range, clade structure, and zoonotic potential in ST95 and ExPEC more broadly. IMPORTANCE E. coli ST95 is one of five dominant ExPEC lineages globally and noted for causing urinary tract and bloodstream infections and neonatal meningitis in humans and colibacillosis in poultry. Using high-resolution phylogenomics, we show that F replicon sequence type is linked to ST95 clade structure and zoonotic potential. Specifically, human centric ST95 clades overwhelmingly harbor F29:B10 (pUTI89) plasmids, while clades carrying both human- and poultry-sourced isolates are typically ColV+ with multiple replicon types. Importantly, several clades identified clonal ColV+ ST95 isolates from human and poultry sources, but clade I, which housed temporally and spatially matched isolates, provided the most robust evidence. Notably, patterns of association of F replicon types with E. coli host were mirrored within a diverse collection of 34,176 E. coli genomes. Our studies indicate that the role of food animals as a source of human ExPEC disease is complex and warrants further investigation.


Subject(s)
Extraintestinal Pathogenic Escherichia coli , F Factor , Humans , Animals , Cattle , Swine , Escherichia coli , Host Specificity , Zoonoses , Drug Resistance, Microbial
4.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: mdl-34910614

ABSTRACT

Escherichia coli ST131 is a globally dispersed extraintestinal pathogenic E. coli lineage contributing significantly to hospital and community acquired urinary tract and bloodstream infections. Here we describe a detailed phylogenetic analysis of the whole genome sequences of 284 Australian ST131 E. coli isolates from diverse sources, including clinical, food and companion animals, wildlife and the environment. Our phylogeny and the results of single nucleotide polymorphism (SNP) analysis show the typical ST131 clade distribution with clades A, B and C clearly displayed, but no niche associations were observed. Indeed, interspecies relatedness was a feature of this study. Thirty-five isolates (29 of human and six of wild bird origin) from clade A (32 fimH41, 2 fimH89, 1 fimH141) were observed to differ by an average of 76 SNPs. Forty-five isolates from clade C1 from four sources formed a cluster with an average of 46 SNPs. Within this cluster, human sourced isolates differed by approximately 37 SNPs from isolates sourced from canines, approximately 50 SNPs from isolates from wild birds, and approximately 52 SNPs from isolates from wastewater. Many ST131 carried resistance genes to multiple antibiotic classes and while 41 (14 %) contained the complete class one integron-integrase intI1, 128 (45 %) isolates harboured a truncated intI1 (462-1014 bp), highlighting the ongoing evolution of this element. The module intI1-dfrA17-aadA5-qacEΔ1-sul1-ORF-chrA-padR-IS1600-mphR-mrx-mphA, conferring resistance to trimethoprim, aminoglycosides, quaternary ammonium compounds, sulphonamides, chromate and macrolides, was the most common structure. Most (73 %) Australian ST131 isolates carry at least one extended spectrum ß-lactamase gene, typically blaCTX-M-15 and blaCTX-M-27. Notably, dual parC-1aAB and gyrA-1AB fluoroquinolone resistant mutations, a unique feature of clade C ST131 isolates, were identified in some clade A isolates. The results of this study indicate that the the ST131 population in Australia carries diverse antimicrobial resistance genes and plasmid replicons and indicate cross-species movement of ST131 strains across diverse reservoirs.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli/classification , Polymorphism, Single Nucleotide , Whole Genome Sequencing/methods , Animals , Australia , Birds , Dogs , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing , Humans , Phylogeny
5.
BMC Vet Res ; 16(1): 148, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32434525

ABSTRACT

BACKGROUND: Infection in the oviduct (salpingitis) is the most common bacterial infection in egg laying hens and is mainly caused by Escherichia coli. The disease is responsible for decreased animal welfare, considerable economic loss as well as a risk of horizontal and vertical transmission of pathogenic E. coli. The outcome of salpingitis may be either acute or chronic. It has not yet been clarified whether the pathological manifestation is a result of the characteristics of the E. coli or whether the manifestation is associated with host factors such as host immunity. RESULTS: From the core- and accessory genome analysis and comparison of 62 E. coli no genetic markers were found to be associated to either acute or chronic infection. Twenty of the 62 genomes harboured at least one antimicrobial resistance gene with resistance against sulfonamides being the most common. The increased serum survival and iron chelating genes iss and iroN were highly prevalent in genomes from both acute and chronic salpingitis. CONCLUSION: Our analysis revealed that no genetic markers could differentiate the E. coli isolated from acute versus chronic salpingitis in egg laying hens. The difference in pathological outcome may be related to other factors such as immunological status, genetics and health of the host. These data indicate that salpingitis is another manifestation of colibacillosis.


Subject(s)
Escherichia coli Infections/veterinary , Escherichia coli/genetics , Poultry Diseases/microbiology , Salpingitis/veterinary , Animals , Chickens , Drug Resistance, Bacterial/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Female , Genome, Bacterial , Poultry Diseases/pathology , Salpingitis/microbiology , Salpingitis/pathology , Whole Genome Sequencing
6.
Sci Rep ; 10(1): 6384, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286369

ABSTRACT

Mycoplasma pneumoniae is a genome reduced pathogen and causative agent of community acquired pneumonia. The major cellular adhesin, P1, localises to the tip of the attachment organelle forming a complex with P40 and P90, two cleavage fragments derived by processing Mpn142, and other molecules with adhesive and mobility functions. LC-MS/MS analysis of M. pneumoniae M129 proteins derived from whole cell lysates and eluents from affinity matrices coupled with chemically diverse host molecules identified 22 proteoforms of P1. Terminomics was used to characterise 17 cleavage events many of which were independently verified by the identification of semi-tryptic peptides in our proteome studies and by immunoblotting. One cleavage event released 1597TSAAKPGAPRPPVPPKPGAPKPPVQPPKKPA1627 from the C-terminus of P1 and this peptide was shown to bind to a range of host molecules. A smaller synthetic peptide comprising the C-terminal 15 amino acids, 1613PGAPKPPVQPPKKPA1627, selectively bound cytoskeletal intermediate filament proteins cytokeratin 7, cytokeratin 8, cytokeratin 18, and vimentin from a native A549 cell lysate. Collectively, our data suggests that ectodomain shedding occurs on the surface of M. pneumoniae where it may alter the functional diversity of P1, Mpn142 and other surface proteins such as elongation factor Tu via a mechanism similar to that described in Mycoplasma hyopneumoniae.


Subject(s)
Adhesins, Bacterial/metabolism , Blood Proteins/metabolism , Cytoskeletal Proteins/metabolism , Mycoplasma pneumoniae/pathogenicity , A549 Cells , Bacterial Adhesion , Host-Pathogen Interactions , Humans , Protein Binding , Protein Processing, Post-Translational
7.
Microorganisms ; 8(2)2020 01 23.
Article in English | MEDLINE | ID: mdl-31979280

ABSTRACT

Salmonella genomic island 1 (SGI1) is an integrative mobilisable element that plays an important role in the capture and spread of multiple drug resistance. To date, SGI1 has been found in clinical isolates of Salmonellaenterica serovars, Proteus mirabilis, Morganellamorganii, Acinetobacterbaumannii, Providenciastuartii, Enterobacterspp, and recently in Escherichia coli. SGI1 preferentially targets the 3´-end of trmE, a conserved gene found in the Enterobacteriaceae and among members of the Gammaproteobacteria. It is, therefore, hypothesised that SGI1 and SGI1-related elements (SGI1-REs) may have been acquired by diverse bacterial genera. Here, Bitsliced Genomic Signature Indexes (BIGSI) was used to screen the NCBI Sequence Read Archive (SRA) for putative SGI1-REs in Gammaproteobacteria. Novel SGI-REs were identified in diverse genera including Cronobacter spp, Klebsiella spp, and Vibrio spp and in two additional isolates of Escherichia coli. An extensively drug-resistant human clonal lineage of Klebsiella pneumoniae carrying an SGI1-RE in the United Kingdom and an SGI1-RE that lacks a class 1 integron were also identified. These findings provide insight into the origins of this diverse family of clinically important genomic islands and expand the knowledge of the potential host range of SGI1-REs within the Gammaproteobacteria.

8.
Sci Rep ; 9(1): 14585, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31601981

ABSTRACT

Mycoplasma hyopneumoniae is an economically-devastating and geographically-widespread pathogen that colonises ciliated epithelium, and destroys mucociliary function. M. hyopneumoniae devotes ~5% of its reduced genome to encode members of the P97 and P102 adhesin families that are critical for colonising epithelial cilia, but mechanisms to impair mucociliary clearance and manipulate host immune response to induce a chronic infectious state have remained elusive. Here we identified two surface exposed M. hyopneumoniae proteases, a putative Xaa-Pro aminopeptidase (MHJ_0659; PepP) and a putative oligoendopeptidase F (MHJ_0522; PepF), using immunofluorescence microscopy and two orthogonal proteomic methodologies. MHJ_0659 and MHJ_0522 were purified as polyhistidine fusion proteins and shown, using a novel MALDI-TOF MS assay, to degrade four pro-inflammatory peptides that regulate lung homeostasis; bradykinin (BK), substance P (SP), neurokinin A (NKA) and neuropeptide Y (NPY). These findings provide insight into the mechanisms used by M. hyopneumoniae to influence ciliary beat frequency, impair mucociliary clearance, and initiate a chronic infectious disease state in swine, features that are a hallmark of disease caused by this pathogen.


Subject(s)
Aminopeptidases/metabolism , Bacterial Proteins/metabolism , Bradykinin/chemistry , Metalloendopeptidases/metabolism , Mycoplasma hyopneumoniae/enzymology , Neurokinin A/chemistry , Neuropeptide Y/chemistry , Substance P/chemistry , Adhesins, Bacterial/metabolism , Animals , Immunity, Innate , Proteomics , Swine , Trypsin/chemistry
9.
mSphere ; 4(3)2019 05 22.
Article in English | MEDLINE | ID: mdl-31118300

ABSTRACT

Salmonella genomic island 1 (SGI1) is an integrative genetic island first described in Salmonella enterica serovars Typhimurium DT104 and Agona in 2000. Variants of it have since been described in multiple serovars of S. enterica, as well as in Proteus mirabilis, Acinetobacter baumannii, Morganella morganii, and several other genera. The island typically confers resistance to older, first-generation antimicrobials; however, some variants carry blaNDM-1, blaVEB-6, and blaCTX-M15 genes that encode resistance to frontline, clinically important antibiotics, including third-generation cephalosporins. Genome sequencing studies of avian pathogenic Escherichia coli (APEC) identified a sequence type 117 (ST117) isolate (AVC96) with genetic features found in SGI1. The complete genome sequence of AVC96 was assembled from a combination of Illumina and single-molecule real-time (SMRT) sequence data. Analysis of the AVC96 chromosome identified a variant of SGI1-B located 18 bp from the 3' end of trmE, also known as the attB site, a known hot spot for the integration of genomic islands. This is the first report of SGI1 in wild-type E. coli The variant, here named SGI1-B-Ec1, was otherwise unremarkable, apart from the identification of ISEc43 in open reading frame (ORF) S023.IMPORTANCE SGI1 and variants of it carry a variety of antimicrobial resistance genes, including those conferring resistance to extended-spectrum ß-lactams and carbapenems, and have been found in diverse S. enterica serovars, Acinetobacter baumannii, and other members of the Enterobacteriaceae SGI1 integrates into Gram-negative pathogenic bacteria by targeting a conserved site 18 bp from the 3' end of trmE For the first time, we describe a novel variant of SGI1 in an avian pathogenic Escherichia coli isolate. The presence of SGI1 in E. coli is significant because it represents yet another lateral gene transfer mechanism to enhancing the capacity of E. coli to acquire and propagate antimicrobial resistance and putative virulence genes. This finding underscores the importance of whole-genome sequencing (WGS) to microbial genomic epidemiology, particularly within a One Health context. Further studies are needed to determine how widespread SGI1 and variants of it may be in Australia.


Subject(s)
Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Gene Transfer, Horizontal , Genomic Islands , Salmonella enterica/genetics , Animals , Anti-Bacterial Agents/pharmacology , Australia , Birds/microbiology , DNA, Bacterial/genetics , Escherichia coli/pathogenicity , Whole Genome Sequencing
10.
Sci Rep ; 7(1): 11227, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894125

ABSTRACT

Many bacterial moonlighting proteins were originally described in medically, agriculturally, and commercially important members of the low G + C Firmicutes. We show Elongation factor Tu (Ef-Tu) moonlights on the surface of the human pathogens Staphylococcus aureus (SaEf-Tu) and Mycoplasma pneumoniae (MpnEf-Tu), and the porcine pathogen Mycoplasma hyopneumoniae (MhpEf-Tu). Ef-Tu is also a target of multiple processing events on the cell surface and these were characterised using an N-terminomics pipeline. Recombinant MpnEf-Tu bound strongly to a diverse range of host molecules, and when bound to plasminogen, was able to convert plasminogen to plasmin in the presence of plasminogen activators. Fragments of Ef-Tu retain binding capabilities to host proteins. Bioinformatics and structural modelling studies indicate that the accumulation of positively charged amino acids in short linear motifs (SLiMs), and protein processing promote multifunctional behaviour. Codon bias engendered by an A + T rich genome may influence how positively-charged residues accumulate in SLiMs.


Subject(s)
Mycoplasma hyopneumoniae/enzymology , Mycoplasma pneumoniae/enzymology , Peptide Elongation Factor Tu/metabolism , Staphylococcus aureus/enzymology , Virulence Factors/metabolism , Computational Biology , Fibrinolysin/metabolism , Host-Pathogen Interactions , Membrane Proteins/metabolism , Models, Molecular , Mycoplasma hyopneumoniae/genetics , Mycoplasma pneumoniae/genetics , Plasminogen/metabolism , Protein Binding , Staphylococcus aureus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...