Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 17(1): 431-49, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17908213

ABSTRACT

Invasive species are predicted to suffer from reductions in genetic diversity during founding events, reducing adaptive potential. Integrating evidence from two literature reviews and two case studies, we address the following questions: How much genetic diversity is lost in invasions? Do multiple introductions ameliorate this loss? Is there evidence for loss of diversity in quantitative traits? Do invaders that have experienced strong bottlenecks show adaptive evolution? How do multiple introductions influence adaptation on a landscape scale? We reviewed studies of 80 species of animals, plants, and fungi that quantified nuclear molecular diversity within introduced and source populations. Overall, there were significant losses of both allelic richness and heterozygosity in introduced populations, and large gains in diversity were rare. Evidence for multiple introductions was associated with increased diversity, and allelic variation appeared to increase over long timescales (~100 years), suggesting a role for gene flow in augmenting diversity over the long-term. We then reviewed the literature on quantitative trait diversity and found that broad-sense variation rarely declines in introductions, but direct comparisons of additive variance were lacking. Our studies of Hypericum canariense invasions illustrate how populations with diminished diversity may still evolve rapidly. Given the prevalence of genetic bottlenecks in successful invading populations and the potential for adaptive evolution in quantitative traits, we suggest that the disadvantages associated with founding events may have been overstated. However, our work on the successful invader Verbascum thapsus illustrates how multiple introductions may take time to commingle, instead persisting as a 'mosaic of maladaptation' where traits are not distributed in a pattern consistent with adaptation. We conclude that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.


Subject(s)
Adaptation, Biological/genetics , Biological Evolution , Demography , Founder Effect , Genetic Variation , Amplified Fragment Length Polymorphism Analysis , Gene Flow/genetics , Geography , Hypericum/genetics , Microsatellite Repeats/genetics , Population Dynamics , Quantitative Trait, Heritable , Random Amplified Polymorphic DNA Technique , Species Specificity , Verbascum/genetics
2.
Mol Ecol ; 16(20): 4269-83, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17850270

ABSTRACT

To understand the success of invasive species, it is important to know whether colonization events are facilitated by adaptive evolution or are limited to sites where a species is pre-adapted to thrive. Studies of the ancient colonization patterns of an invader in its native range provide an opportunity to examine its natural history of adaptation and colonization. This study uses molecular (internal transcribed spacer sequence and amplified fragment length polymorphism) and common garden approaches to assess the ancient patterns of establishment and quantitative trait evolution in the invasive shrub Hypericum canariense. This species has an unusually small and discrete native range in the Canary Islands. Our data reveal two genetic varieties with divergent life histories and different colonization patterns across the islands. Although molecular divergence within each variety is large (pairwise FST from 0.18 to 0.32 between islands) and nearly as great as divergence between them, life-history traits show striking uniformity within varieties. The discrepancy between molecular and life-history trait divergence points to the action of stabilizing selection within varieties and the influence of pre-adaptation on patterns of colonization. The colonization history of H. canariense reflects how the relationship between selective environments in founding and source populations can dictate establishment by particular lineages and their subsequent evolutionary stasis or change.


Subject(s)
Genetic Variation , Hypericum/genetics , Quantitative Trait, Heritable , Adaptation, Physiological/genetics , Africa , DNA, Plant/genetics , Europe , Geography , Hypericum/classification , Hypericum/growth & development , Linkage Disequilibrium , Phenotype , Phylogeny , Polymorphism, Restriction Fragment Length , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...