Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Imaging ; 3: e19, 2023.
Article in English | MEDLINE | ID: mdl-38510168

ABSTRACT

The cell cycle is a complex biological phenomenon, which plays an important role in many cell biological processes and disease states. Machine learning is emerging to be a pivotal technique for the study of the cell cycle, resulting in a number of available tools and models for the analysis of the cell cycle. Most, however, heavily rely on expert annotations, prior knowledge of mechanisms, and imaging with several fluorescent markers to train their models. Many are also limited to processing only the spatial information in the cell images. In this work, we describe a different approach based on representation learning to construct a manifold of the cell life cycle. We trained our model such that the representations are learned without exhaustive annotations nor assumptions. Moreover, our model uses microscopy images derived from a single fluorescence channel and utilizes both the spatial and temporal information in these images. We show that even with fewer channels and self-supervision, information relevant to cell cycle analysis such as staging and estimation of cycle duration can still be extracted, which demonstrates the potential of our approach to aid future cell cycle studies and in discovery cell biology to probe and understand novel dynamic systems.

2.
Med Image Anal ; 70: 102002, 2021 05.
Article in English | MEDLINE | ID: mdl-33657508

ABSTRACT

The Endoscopy Computer Vision Challenge (EndoCV) is a crowd-sourcing initiative to address eminent problems in developing reliable computer aided detection and diagnosis endoscopy systems and suggest a pathway for clinical translation of technologies. Whilst endoscopy is a widely used diagnostic and treatment tool for hollow-organs, there are several core challenges often faced by endoscopists, mainly: 1) presence of multi-class artefacts that hinder their visual interpretation, and 2) difficulty in identifying subtle precancerous precursors and cancer abnormalities. Artefacts often affect the robustness of deep learning methods applied to the gastrointestinal tract organs as they can be confused with tissue of interest. EndoCV2020 challenges are designed to address research questions in these remits. In this paper, we present a summary of methods developed by the top 17 teams and provide an objective comparison of state-of-the-art methods and methods designed by the participants for two sub-challenges: i) artefact detection and segmentation (EAD2020), and ii) disease detection and segmentation (EDD2020). Multi-center, multi-organ, multi-class, and multi-modal clinical endoscopy datasets were compiled for both EAD2020 and EDD2020 sub-challenges. The out-of-sample generalization ability of detection algorithms was also evaluated. Whilst most teams focused on accuracy improvements, only a few methods hold credibility for clinical usability. The best performing teams provided solutions to tackle class imbalance, and variabilities in size, origin, modality and occurrences by exploring data augmentation, data fusion, and optimal class thresholding techniques.


Subject(s)
Artifacts , Deep Learning , Algorithms , Endoscopy, Gastrointestinal , Humans
3.
F1000Res ; 10: 838, 2021.
Article in English | MEDLINE | ID: mdl-35186271

ABSTRACT

Single particle tracking (SPT) is one of the most widely used tools in optical microscopy to evaluate particle mobility in a variety of situations, including cellular and model membrane dynamics. Recent technological developments, such as Interferometric Scattering microscopy, have allowed recording of long, uninterrupted single particle trajectories at kilohertz framerates. The resulting data, where particles are continuously detected and do not displace much between observations, thereby do not require complex linking algorithms. Moreover, while these measurements offer more details into the short-term diffusion behaviour of the tracked particles, they are also subject to the influence of localisation uncertainties, which are often underestimated by conventional analysis pipelines. we thus developed a Python library, under the name of TRAIT2D (Tracking Analysis Toolbox - 2D version), in order to track particle diffusion at high sampling rates, and analyse the resulting trajectories with an innovative approach. The data analysis pipeline introduced is more localisation-uncertainty aware, and also selects the most appropriate diffusion model for the data provided on a statistical basis. A trajectory simulation platform also allows the user to handily generate trajectories and even synthetic time-lapses to test alternative tracking algorithms and data analysis approaches. A high degree of customisation for the analysis pipeline, for example with the introduction of different diffusion modes, is possible from the source code. Finally, the presence of graphical user interfaces lowers the access barrier for users with little to no programming experience.


Subject(s)
Algorithms , Software , Computer Simulation , Diffusion
SELECTION OF CITATIONS
SEARCH DETAIL
...