Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Holocene ; 32(11): 1209-1221, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36177447

ABSTRACT

Due to the marine reservoir effect, radiocarbon dates of marine samples require a correction. Marine reservoir effects, however, may vary among different marine species within a given body of water. Factors such as diet, feeding depth and migratory behaviour all affect the 14C date of a marine organism. Moreover, there is often significant variation within single marine species. Whilst the careful consideration of the ΔR values of a single marine species in a given location is important, so too is the full range of ΔR values within an ecosystem. This paper illustrates this point, using a sample pairing method to estimate the reservoir effects in 17 marine samples, of eight different species, from the archaeological site of Ekven (Eastern Chukotka, Siberia). An OxCal model is used to assess the strength of these estimates. The marine reservoir effects of samples passing the model range from ΔR (Marine20) = 136 ± 41-ΔR = 460 ± 40. Marine reservoir effect estimates of these samples and other published samples are used to explore variability in the wider Bering Strait region. The archaeological implications of this variability are also discussed. The calibrating of 14C dates from human bone collagen, for example, could be improved by applying a dietary relevant marine reservoir effect correction. For humans from the site of Ekven, a ΔR (Marine20) correction of 289 ± 124 years or reservoir age correction of 842 ± 123 years is suggested.

2.
Science ; 345(6200): 1255832, 2014 08 29.
Article in English | MEDLINE | ID: mdl-25170159

ABSTRACT

The New World Arctic, the last region of the Americas to be populated by humans, has a relatively well-researched archaeology, but an understanding of its genetic history is lacking. We present genome-wide sequence data from ancient and present-day humans from Greenland, Arctic Canada, Alaska, Aleutian Islands, and Siberia. We show that Paleo-Eskimos (~3000 BCE to 1300 CE) represent a migration pulse into the Americas independent of both Native American and Inuit expansions. Furthermore, the genetic continuity characterizing the Paleo-Eskimo period was interrupted by the arrival of a new population, representing the ancestors of present-day Inuit, with evidence of past gene flow between these lineages. Despite periodic abandonment of major Arctic regions, a single Paleo-Eskimo metapopulation likely survived in near-isolation for more than 4000 years, only to vanish around 700 years ago.


Subject(s)
Genome, Human/genetics , Human Migration , Inuit/genetics , Alaska/ethnology , Arctic Regions/ethnology , Base Sequence , Bone and Bones , Canada/ethnology , DNA, Mitochondrial/genetics , Greenland/ethnology , Hair , History, Ancient , Humans , Inuit/ethnology , Inuit/history , Molecular Sequence Data , Siberia/ethnology , Survivors/history , Tooth
SELECTION OF CITATIONS
SEARCH DETAIL
...