Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 5(8): 4233-4241, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32149253

ABSTRACT

A combination of plasmonic nanoparticles (NPs) with semiconductor photocatalysts, called plasmonic photocatalysts, can be a good candidate for highly efficient photocatalysts using broadband solar light because it can greatly enhance overall photocatalytic efficiency by extending the working wavelength range of light from ultraviolet (UV) to visible. In particular, fixation of plasmonic photocatalysts on a floating porous substrate can have additional advantages for their recycling after water treatment. Here, we report on a floating porous plasmonic photocatalyst based on a polydimethylsiloxane (PDMS)-TiO2-gold (Au) composite sponge, in which TiO2 and Au NPs are simultaneously immobilized on the surface of interconnected pores in the PDMS sponge. This can be easily fabricated by a simple sugar-template method with TiO2 NPs and in situ reduction of Au NPs by the PDMS without extra chemicals. Its ability to decompose the organic pollutant rhodamine B in water was tested under UV and visible light, respectively. The results showed highly enhanced photocatalytic activity under both UV and visible light compared to the PDMS-TiO2 sponge and the PDMS-Au sponge. Furthermore, its recyclability was also demonstrated for multiple cycles. The simplicity of fabrication and high photocatalytic performance of our PDMS-TiO2-Au sponge can be promising in environmental applications to treat water pollution.

2.
Sci Rep ; 10(1): 1810, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32020003

ABSTRACT

In this paper, a broadband metamaterial microwave absorber is designed, simulated and measured. Differently from the traditional method which is only based on unit cell boundary conditions, we carried out full-wave finite integration simulations using full-sized configurations. Starting from an elementary unit cell structure, four kinds of coding metamaterial blocks, 2 × 2, 3 × 3, 4 × 4 and 6 × 6 blocks were optimized and then used as building blocks (meta-block) for the construction of numerous 12 × 12 topologies with a realistic size scale. We found the broadband absorption response in the frequency range 16 GHz to 33 GHz, in good agreement with the equivalent medium theory prediction and experimental observation. Considering various applications of metamaterials or metamaterial absorbers in the electromagnetic wave processing, including the radars or satellite communications, requires the frequency in the range up to 40 GHz. Our study could be useful to guide experimental work. Furthermore, compared to the straightforward approach that represents the metamaterials configurations as 12 × 12 matrices of random binary bits (0 and 1), our new approach achieves significant gains in the broadband absorption. Our method also may be applied to the full-sized structures with arbitrary dimensions, and thus provide a useful tool in the design of metamaterials with specific desired frequency ranges.

3.
Sci Rep ; 8(1): 9523, 2018 Jun 22.
Article in English | MEDLINE | ID: mdl-29934600

ABSTRACT

Metamaterial full-sized absorber structures are numerically and experimentally investigated in GHz region and then examined in THz frequency. By manipulating monitoring the number and the position of the defect elements in conventional unit cells, the optimal integrative absorber structures are generated. The proposed structures provide an ultra-broadband absorbance in the operating frequency. The good agreement between simulation, measurement and theoretical analysis is observed with a 5 GHz-bandwidth corresponding to the absorption of 95%. In particular, we extrapolate the concept to THz region and demonstrate that, the method can be applied to increase the bandwidth of the metamaterial absorber to 5 THz, while maintaining the other characteristics. This structure can be applied to improve the performance of telecommunication systems such as micro-antenna, micro-electromagnetic transmitters and apply to imaging and sensing fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...